
Crestron SIMPL+®

Software
Language Reference Guide

This document was prepared and written by the Technical Documentation department at:

Crestron Electronics, Inc.
15 Volvo Drive

Rockleigh, NJ 07647

All brand names, product names and trademarks are the property of their respective owners.
©2003 Crestron Electronics, Inc.

1-888-CRESTRON

Crestron SIMPL+® Software
Contents
SIMPL+ Language Reference Guide

Introduction . 1

Software Requirements . 1

Licensing of SIMPL+ Cross Compiler . 2

What's New . 7

Converting from an X-Generation to a 2-Series Target . 7
X-Generation Target and 2-Series Target Differences . 7

Programming Environment . 8

Programming Environment Overview . 8
Target Selection . 8
Edit Preferences . 9
Insert Category . 11

General Information . 13

Conventions Used . 13
Variable Names . 13
Comments . 13

Relative Path Names for Files . 14

Operators . 15

Operators Overview . 15
Signed vs Unsigned Arithmetic . 18
Operator Precedence & Grouping . 20
Numeric Formats . 21

Task Switching . 22

Task Switching for X-Generation (CNX) Control Systems 22
Task Switching for 2-Series Control Systems . 25

Language Constructs & Functions . 29

Language Constructs & Functions Overview . 29
Arrays . 31
Compiler Directives . 33

#CRESTRON_LIBRARY . 34
#DEFAULT_NONVOLATILE . 35
Language Reference Guide - DOC. 5797G Contents i

Software Crestron SIMPL+ ®
#DEFAULT_VOLATILE . 36
#DEFINE_CONSTANT . 37
#HELP . 38
#HELP_BEGIN … #HELP_END . 39
#HINT . 40
#IF_DEFINED … #ENDIF . 41
#SYMBOL_NAME . 42
#USER_LIBRARY . 43
#IF_NOT_DEFINED … #ENDIF . 44

Declarations . 45
Declarations Overview . 45
Fixed and Variable Size Arrays . 46
ANALOG_INPUT . 47
ANALOG_OUTPUT . 48
DIGITAL_INPUT . 51
DIGITAL_OUTPUT . 52
INTEGER . 54
LONG_INTEGER . 56
SIGNED_INTEGER . 58
SIGNED_LONG_INTEGER . 60
STRING . 62
STRING_INPUT . 64
STRING_OUTPUT . 65
STRUCTURES . 67
Nonvolatile . 70
SendMail . 73
EVENT . 77
PUSH . 78
Release . 79
Stacked Events . 80
FOR . 83
WHILE . 85
CSWITCH . 87
IF - ELSE . 89
SWITCH . 91
GetLastModifiedArrayIndex . 93
GetNumArrayCols . 95
GetNumArrayRows . 97
SetArray . 98
Byte . 102
High . 103
Low . 104
RotateLeft . 105
RotateRight . 106
RotateLeftLong . 107
RotateRightLong . 108
Atol . 110
Chr . 111
ItoA . 112
ItoHex . 113
LtoA . 114
LtoHex . 115

File Functions . 116
File Functions Overview . 116
ii Contents Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
File Function Return Error Codes . 117
Reading and Writing Data to a File . 118
CheckForDisk . 119
EndFileOperations . 120
FileBOF . 121
FileClose . 122
FileDate . 123
FileDay . 125
FileDelete . 126
FileEOF . 127
FileGetDateNum . 128
FileGetDayOfWeekNum . 129
FileGetHourNum . 130
FileGetMinutesNum . 131
FileGetMonthNum . 132
FileGetSecondsNum . 133
FileGetYearNum . 134
FILE_INFO Structure . 135
FileLength . 136
FileMonth . 137
FileOpen . 138
FileRead . 141
FileSeek . 143
FileTime . 145
FindClose . 148
FindFirst . 149
FindNext . 151
GetCurrentDirectory . 152
IsDirectory . 153
IsHidden . 154
IsReadOnly . 155
IsSystem . 156
IsVolume . 157
MakeDirectory . 158
ReadInteger . 159
ReadIntegerArray . 161
ReadLongInteger . 163
ReadLongIntegerArray . 165
ReadSignedInteger . 167
ReadSignedIntegerArray . 169
ReadSignedLongIntegerArray . 173
ReadString . 175
ReadStringArray . 177
ReadStructure . 179
RemoveDirectory . 181
SetCurrentDirectory . 182
StartFileOperations . 183
WaitForNewDisk . 184
WriteInteger . 185
WriteIntegerArray . 187
WriteLongInteger . 189
WriteSignedInteger . 191
WriteSignedIntegerArray . 193
WriteSignedLongInteger . 195
Language Reference Guide - DOC. 5797G Contents iii

Software Crestron SIMPL+ ®
WriteSignedLongIntegerArray . 197
WriteStringArray . 201
WriteStructure . 203
Max . 206
MIN . 207
MulDiv . 208
SMAX . 209
SMin . 210
Random . 211
Rnd . 212
Seed . 213
Print . 216
String Concatenation . 218
Find . 220
Gather . 221
GetC . 223
Left . 224
Len . 225
Lower . 226
Mid . 227
REVERSEFIND . 229
Right . 230
SetString . 231
Upper . 233
ProcessLogic . 235
Pulse . 236
TerminateEvent . 237
GenerateUserNotice . 238
GenerateUserWarning . 239
GenerateUserError . 240
CheckForNVRAMDisk . 241
Day . 243
GETDATENUM . 244
GETDAYOFWEEKNUM . 245
GETHOURNUM . 246
GETHSECONDS . 247
GETMINUTESNUM . 248
GETMONTHNUM . 249
GETSECONDSNUM . 250
GETTICKS . 251
GETYEARNUM . 252
MONTH . 253
SETCLOCK . 254
SETDATE . 255
TIME . 256
CancelAllWait . 258
CancelWait . 259
PauseAllWait . 260
PauseWait . 261
RetimeWait . 264
Wait . 265
Function Parameters . 268
ByRef, ByVal, ReadOnlyByRef . 269
Returning a Value . 272
iv Contents Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Calling a Function . 274
Function Libraries . 275
Example 2: 8-Level switch on a Pesa switcher . 280
Example 3: Computing the Number of Days in a Month

(Using Functions) . 282
Example 4: Computing the Number of Days in a Month
(Using Function Libraries) . 283

Compiler Errors and Warnings . 286

Compiler Errors and Warnings Overview . 286
Syntax Errors (Compiler Errors 1000 to 1013) . 289

Compiler Error 1000 . 289
Compiler Error 1001 . 290
Compiler Error 1002 . 292
Compiler Error 1003 . 293
Compiler Error 1004 . 293
Compiler Error 1005 . 294
Compiler Error 1006 . 294
Compiler Error 1007 . 295
Compiler Error 1008 . 296
Compiler Error 1009 . 297
Compiler Error 1010 . 298
Compiler Error 1011 . 298
Compiler Error 1012 . 299
Compiler Error 1013 . 299

Fatal Errors (Compiler Errors 1100 to 1101) . 300
Compiler Error 1100 . 300
Compiler Error 1101 . 301

Expression Error (Compiler Errors 1200 to 1201) . 301
Compiler Error 1200 . 301
Compiler Error 1201 . 303

Declaration Errors (Compiler Errors 1300 to 1312) . 304
Compiler Error 1300 . 304
Compiler Error 1301 . 305
Compiler Error 1302 . 306
Compiler Error 1303 . 307
Compiler Error 1304 . 308
Compiler Error 1305 . 308
Compiler Error 1306 . 309
Compiler Error 1307 . 310
Compiler Error 1308 . 311
Compiler Error 1309 . 312
Compiler Error 1310 . 313
Compiler Error 1311 . 314
Compiler Error 1312 . 315
Compiler Error 1313 . 315
Compiler Error 1314 . 316

Assignment Errors (Compiler Errors 1400 to 1402) . 317
Compiler Error 1400 . 317
Compiler Error 1401 . 318
Compiler Error 1402 . 318

Function Argument Errors (Compiler Errors 1500 to 1508) 319
Compiler Error 1500 . 319
Language Reference Guide - DOC. 5797G Contents v

Software Crestron SIMPL+ ®
Compiler Error 1501 . 320
Compiler Error 1502 . 321
Compiler Error 1503 . 321
Compiler Error 1504 . 322
Compiler Error 1505 . 323
Compiler Error 1506 . 324
Compiler Error 1507 . 324
Compiler Error 1508 . 325

Construct Errors (Compiler Errors 1600 to 1608) . 326
Compiler Error 1600 . 326
Compiler Error 1601 . 326
Compiler Error 1602 . 327
Compiler Error 1603 . 328
Compiler Error 1604 . 329
Compiler Error 1605 . 329
Compiler Error 1606 . 330
Compiler Error 1607 . 331
Compiler Error 1608 . 331

File Errors (Compiler Errors 1700 to 1702) . 332
Compiler Error 1700 . 332
Compiler Error 1701 . 332
Compiler Error 1702 . 332

Compiler Warnings (Compiler Errors 1800 to 1803) . 333
Compiler Warning 1800 . 333
Compiler Warning 1801 . 333
Compiler Warning 1802 . 334
Compiler Warning 1803 . 335

SIMPL+ Revisions . 336

Obsolete Functions . 337

System Interfacing - Cresnet and CPU . 337
GetCIP . 337
GetCresnet . 338
GetSlot . 339
IsSignalDefined . 340
SendCresnetPacket . 341
SendPacketToCPU . 342
SetCIP . 343
SetCresnet . 344
SetSlot . 345
#ANALOG_OUTPUT_JOIN . 347
#DIGITAL_INPUT_JOIN . 347
#DIGITAL_OUTPUT_JOIN . 348
#STRING_INPUT_JOIN . 348
#STRING_OUTPUT_JOIN . 349

CEN-OEM-Specific Definitions . 350
_OEM_BREAK . 350
_OEM_CD . 351
_OEM_CTS . 351
_OEM_DTR . 352
_OEM_LONG_BREAK . 353
_OEM_MAX_STRING . 353
_OEM_PACING . 354
vi Contents Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
_OEM_RTS . 355
_OEM_STR_IN . 355
_OEM_STR_OUT . 356

Index .357

Software License Agreement . 361

Return and Warranty Policies . 363
Language Reference Guide - DOC. 5797G Contents vii

Software Crestron SIMPL+ ®
This page intentionally left blank.
viii Contents Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Introduction

SIMPL+® is a language extension that enhances SIMPL Windows by using a
procedural “C-like” language to code elements of the program that were difficult, or
impossible, with SIMPL alone. This help system provides specific information about
the SIMPL+ language syntax, and can be used as a reference manual.

For a tutorial on SIMPL+ programming, consult the SIMPL+ Programming Guide
(Doc. 5789). The latest version of the guide can be obtained from the Downloads |
Product Manuals section of the Crestron website (www.crestron.com).

Software Requirements

SIMPL+ has several versions. Earlier versions of SIMPL+ do not contain features
and constructs found in later revisions. Each version of SIMPL+ requires a minimum
revisions of SIMPL Windows and Control System Update (UPZ or, for 2-Series
control systems, CUZ) files. The specifications are listed below.

Software Requirements

SIMPL+ VERSION MINIMUM SIMPL WINDOWS REQUIRED MINIMUM UPZ MINIMUM CUZ
Version 1.00 1.30.01 5.04.11 N/A
Version 2.00 1.40.02 5.10.00 N/A
Version 3.00 2.00 N/A 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 1

Software Crestron SIMPL+ ®
Licensing of SIMPL+ Cross Compiler

Crestron SIMPL+ Cross-Compiler Version 1.1 is simply an Installshield-installed version of the Coldfire GNU C
Compiler, which is available on Crestron's FTP site in the SIMPL Windows directory as directory GNUSOURCE in ftp://
ftp.crestron.com/Simpl_Windows and in the \GNUSource directory of the Programming Tools CD.

It includes and references code that is available from www.cygwin.com/cvs.html

Some files are deleted by the Installshield procedure which are not necessary for general use of the C compiler, in order to
save space on user PCs. But it is an unmodified version of this code. The original executables and the source code for them
can be obtained from the authors at the above sites

The source code has also been gathered underneath a single directory for your convenience and is available on Crestron's
FTP site in the SIMPL Windows directory as directory GNUSOURCE in ftp://ftp.crestron.com/Simpl_Windows and in the
\GNUSource directory of the Programming Tools CD. They also include GNU utilities, which are copyrighted by the Free
Software Foundation.

Other Crestron software simply executes this code as a separate executable, and does not incorporate GNU source code into
Crestron software. Crestron's standard licensing agreement does not apply to this software; only the license described here
applies.

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Refer to the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License along with this program (it is appended to this
document for your convenience); if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston,
MA 02111-1307, USA.

The text for the license agreement below is also available from www.gnu.org/copyleft/gpl.html

GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (C) 1989, 1991 Free Software Foundation, Inc.

59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies of this license document, but changing it is not allowed.

PREAMBLE

The licenses for most software are designed to take away your freedom to share and change it. By contrast, the GNU
General Public License is intended to guarantee your freedom to share and change free software--to make sure the software
is free for all its users. This General Public License applies to most of the Free Software Foundation's software and to any
other program whose authors commit to using it. (Some other Free Software Foundation software is covered by the GNU
Library General Public License instead.) You can apply it to your programs, too.
2 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
When we speak of free software, we are referring to freedom, not price. Our General Public Licenses are designed to make
sure that you have the freedom to distribute copies of free software (and charge for this service if you wish), that you receive
source code or can get it if you want it, that you can change the software or use pieces of it in new free programs; and that
you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you these rights or to ask you to surrender
the rights. These restrictions translate to certain responsibilities for you if you distribute copies of the software, or if you
modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you must give the recipients all the
rights that you have. You must make sure that they, too, receive or can get the source code. And you must show them these
terms so they know their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this license which gives you legal
permission to copy, distribute and/or modify the software.

Also, for each author's protection and ours, we want to make certain that everyone understands that there is no warranty for
this free software. If the software is modified by someone else and passed on, we want its recipients to know that what they
have is not the original, so that any problems introduced by others will not reflect on the original authors' reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid the danger that redistributors of a
free program will individually obtain patent licenses, in effect making the program proprietary. To prevent this, we have
made it clear that any patent must be licensed for everyone's free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed by the copyright holder saying it may
be distributed under the terms of this General Public License. The “Program”, below, refers to any such program or work,
and a “work based on the Program” means either the Program or any derivative work under copyright law: that is to say, a
work containing the Program or a portion of it, either verbatim or with modifications and/or translated into another
language. (Hereinafter, translation is included without limitation in the term “modification”.) Each licensee is addressed as
“you”.

Activities other than copying, distribution and modification are not covered by this License; they are outside its scope. The
act of running the Program is not restricted, and the output from the Program is covered only if its contents constitute a
work based on the Program (independent of having been made by running the Program). Whether that is true depends on
what the Program does.

1. You may copy and distribute verbatim copies of the Program's source code as you receive it, in any medium, provided
that you conspicuously and appropriately publish on each copy an appropriate copyright notice and disclaimer of warranty;
keep intact all the notices that refer to this License and to the absence of any warranty; and give any other recipients of the
Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your option offer warranty protection in
exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a work based on the Program,
and copy and distribute such modifications or work under the terms of Section 1 above, provided that you also meet all of
these conditions:

a) You must cause the modified files to carry prominent notices stating that you changed the files and the date of any
change.

b) You must cause any work that you distribute or publish, that in whole or in part contains or is derived from the Program
or any part thereof, to be licensed as a whole at no charge to all third parties under the terms of this License.

c) If the modified program normally reads commands interactively when run, you must cause it, when started running for
such interactive use in the most ordinary way, to print or display an announcement including an appropriate copyright
notice and a notice that there is no warranty (or else, saying that you provide a warranty) and that users may redistribute
the program under these conditions, and telling the user how to view a copy of this License. (Exception: if the Program
Language Reference Guide - DOC. 5797G SIMPL+® 3

Software Crestron SIMPL+ ®
itself is interactive but does not normally print such an announcement, your work based on the Program is not required to
print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections of that work are not derived from the
Program, and can be reasonably considered independent and separate works in themselves, then this License, and its terms,
do not apply to those sections when you distribute them as separate works. But when you distribute the same sections as
part of a whole which is a work based on the Program, the distribution of the whole must be on the terms of this License,
whose permissions for other licensee is extend to the entire whole, and thus to each and every part regardless of who wrote
it.

Thus, it is not the intent of this section to claim rights or contest your rights to work written entirely by you; rather, the
intent is to exercise the right to control the distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the Program (or with a work based on the
Program) on a volume of a storage or distribution medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2) in object code or executable form
under the terms of Sections 1 and 2 above provided that you also do one of the following:

a) Accompany it with the complete corresponding machine-readable source code, which must be distributed under the
terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

b) Accompany it with a written offer, valid for at least three years, to give any third party, for a charge no more than your
cost of physically performing source distribution, a complete machine-readable copy of the corresponding source code, to
be distributed under the terms of Sections 1 and 2 above on a medium customarily used for software interchange; or,

c) Accompany it with the information you received as to the offer to distribute corresponding source code. (This alternative
is allowed only for noncommercial distribution and only if you received the program in object code or executable form with
such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifications to it. For an executable work,
complete source code means all the source code for all modules it contains, plus any associated interface definition files,
plus the scripts used to control compilation and installation of the executable. However, as a special exception, the source
code distributed need not include anything that is normally distributed (in either source or binary form) with the major
components (compiler, kernel, and so on) of the operating system on which the executable runs, unless that component
itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from a designated place, then offering
equivalent access to copy the source code from the same place counts as distribution of the source code, even though third
parties are not compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly provided under this License. Any
attempt otherwise to copy, modify, sublicense or distribute the Program is void, and will automatically terminate your rights
under this License. However, parties who have received copies, or rights, from you under this License will not have their
licenses terminated so long as such parties remain in full compliance.

5. You are not required to accept this License, since you have not signed it. However, nothing else grants you permission
to modify or distribute the Program or its derivative works. These actions are prohibited by law if you do not accept this
License. Therefore, by modifying or distributing the Program (or any work based on the Program), you indicate your
acceptance of this License to do so, and all its terms and conditions for copying, distributing or modifying the Program or
works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the recipient automatically receives a license
from the original licensor to copy, distribute or modify the Program subject to these terms and conditions. You may not
impose any further restrictions on the recipients' exercise of the rights granted herein. You are not responsible for enforcing
compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any other reason (not limited to patent
issues), conditions are imposed on you (whether by court order, agreement or otherwise) that contradict the conditions of
this License, they do not excuse you from the conditions of this License. If you cannot distribute so as to satisfy
simultaneously your obligations under this License and any other pertinent obligations, then as a consequence you may not
4 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
distribute the Program at all. For example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way you could satisfy both it and this
License would be to refrain entirely from distribution of the Program.

If any portion of this section is held invalid or unenforceable under any particular circumstance, the balance of the section
is intended to apply and the section as a whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other property right claims or to contest validity
of any such claims; this section has the sole purpose of protecting the integrity of the free software distribution system,
which is implemented by public license practices. Many people have made generous contributions to the wide range of
software distributed through that system in reliance on consistent application of that system; it is up to the author/donor to
decide if he or she is willing to distribute software through any other system and a licensee cannot impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence of the rest of this License.

8. If the distribution and/or use of the Program is restricted in certain countries either by patents or by copyrighted
interfaces, the original copyright holder who places the Program under this License may add an explicit geographical
distribution limitation excluding those countries, so that distribution is permitted only in or among countries not thus
excluded. In such case, this License incorporates the limitation as if written in the body of this License.

9. The Free Software Foundation may publish revised and/or new versions of the General Public License from time to time.
Such new versions will be similar in spirit to the present version, but may differ in detail to address new problems or
concerns.

Each version is given a distinguishing version number. If the Program specifies a version number of this License which
applies to it and “any later version”, you have the option of following the terms and conditions either of that version or of
any later version published by the Free Software Foundation. If the Program does not specify a version number of this
License, you may choose any version ever published by the Free Software Foundation.

10. If you wish to incorporate parts of the Program into other free programs whose distribution conditions are different,
write to the author to ask for permission. For software which is copyrighted by the Free Software Foundation, write to the
Free Software Foundation; we sometimes make exceptions for this. Our decision will be guided by the two goals of
preserving the free status of all derivatives of our free software and of promoting the sharing and reuse of software
generally.

NO WARRANTY

11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY FOR THE
PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN
WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS IS”
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE.
THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD
THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING, REPAIR OR
CORRECTION.

12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING WILL ANY
COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR REDISTRIBUTE THE
PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OR INABILITY TO USE
THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF DATA OR DATA BEING RENDERED
INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO
OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED
OF THE POSSIBILITY OF SUCH DAMAGES.

END OF TERMS AND CONDITIONS

How to Apply These Terms to Your New Programs
Language Reference Guide - DOC. 5797G SIMPL+® 5

Software Crestron SIMPL+ ®
If you develop a new program, and you want it to be of the greatest possible use to the public, the best way to achieve this
is to make it free software that everyone can redistribute and change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the start of each source file to most
effectively convey the exclusion of warranty; and each file should have at least the “copyright” line and a pointer to where
the full notice is found.

One line to give the program's name and an idea of what it does.

Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied
warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. Refer to the GNU General Public
License for more details.

You should have received a copy of the GNU General Public License

along with this program; if not, write to the Free Software Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA
02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an interactive mode:

Gnomovision version 69, Copyright (C) year name of author

Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type `show w'.

This is free software, and you are welcome to redistribute it under certain conditions; type `show c' for details.

The hypothetical commands `show w' and `show c' should show the appropriate parts of the General Public License. Of
course, the commands you use may be called something other than ̀ show w' and ̀ show c'; they could even be mouse-clicks
or menu items--whatever suits your program.

You should also get your employer (if you work as a programmer) or your school, if any, to sign a “copyright disclaimer”
for the program, if necessary. Here is a sample; alter the names:

Yoyodyne, Inc., hereby disclaims all copyright

interest in the program `Gnomovision'

written by James Hacker.

signature of Ty Coon, 1 April 2002

Ty Coon, Vice President

This General Public License does not permit incorporating your program into proprietary programs. If your program is a
subroutine library, you may consider it more useful to permit linking proprietary applications with the library. If this is what
you want to do, use the GNU Library General Public License instead of this License.

FSF & GNU inquiries & questions to gnu@gnu.org.

6 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
What's New

Converting from an X-Generation to a 2-Series Target

• Select 2-Series Target within SIMPL+ environment (From the SIMPL+
application menu, select Build | 2-Series Control System Target. The X-
Generation Target may be deselected if no longer needed).

• Recompile the SIMPL+ program.

X-Generation Target and 2-Series Target Differences

• I/O Datatypes (DIGITAL_INPUT, etc.) can no longer be passed to functions as
arguments.

• Global variables can no longer be declared within User or Crestron Libraries.

• If TerminateEvent resides within a Wait Statement Block, it will only exit the
Wait Statement Block's function scope - NOT the PUSH, CHANGE,
RELEASE or EVENT in which it resides.

The following functions are no longer available in the 2-Series Control System:

GetCIP()

SetCIP()

GetCresnet()

SetCresnet()

GetSlot()

SetSlot()

_OEM functions

#ANALOG_INPUT_JOIN

#ANALOG_OUTPUT_JOIN

#DIGITAL_INPUT_JOIN

#DIGITAL_OUTPUT_JOIN

#STRING_INPUT_JOIN

#STRING_OUTPUT_JOIN
Language Reference Guide - DOC. 5797G SIMPL+® 7

Software Crestron SIMPL+ ®
Programming Environment

Programming Environment Overview

While running SIMPL Windows, select File | New SIMPL+ and the SIMPL+
programming environment appears. This section describes the environment for
SIMPL+ Version 3.00.

The SIMPL+ Module Information template is filled with commented code that makes
it easy to remember the language syntax and structure. Simply locate the necessary
lines, uncomment them, and add the appropriate code. To uncomment a line of code,
either remove the “//” that appears at the start of the line or remove the multi-line
comment indicators /*…*/.

Target Selection
Target Selection Pulldown Menu

X Generation (CNX) Control Systems consist of the CEN-TVAV, CNMSX-AV/
PRO, and CNRACKX/-DP.

The 2-Series Control Systems currently consist of the AV2, CP2, CP2E, PAC2,
PAC2M, PRO2, and RACK2.

Selecting a target implies that the module MUST work for that target and any
statements that are not valid for that target are NOT permitted. It does NOT mean that
the module won't work for other targets - it may, if it were compiled for other targets
at some future time. More functions and support are available for 2-Series systems,
so do not limit yourself to the X-Generation usages, if they are not needed.
8 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software

One or both targets may be selected to compile the program for both types of control
systems. When compiling a program for a specific type of control system, an error
message appears if a wrong control system target is selected that does not support a
particular function or syntax.. Shown below are the two target selection buttons of the
menu toolbar.

Toolbar Target Selection Buttons.

X-GEN - shortcut to Build | X-Generation Control Systems Target 2 - shortcut to
Build | 2-Series Control Systems Target. (This is the default setting upon opening
SIMPL+.)

Edit Preferences
Preferences Toolbar Pull-Down Menu

NOTE: In previous versions of SIMPL+, the settings for the target types were
system-wide. Those settings applied to all SIMPL+ modules that were opened and not
specific to the active module being edited. In version 3.00, the target type setting is
specific only to the active module being edited and saved within that module. The
toolbar buttons reflect the target type of the active module within the SIMPL+
environment.

NOTE: If a program is compiled for the wrong type of control system, an error
message appears when attempting to upload, and the program must be recompiled.
Language Reference Guide - DOC. 5797G SIMPL+® 9

Software Crestron SIMPL+ ®
Text Editor Tab

Font - Used to select font to be used in SIMPL+ Text Editor's main window.

Cursor Positioning, Auto-Indent - When the 'enter' key is pressed, the cursor will
automatically indent to the same initial tab position as in the current line.

• To manually indent a block of text, highlight the block and press TAB.

• To manually outdent a block of text, highlight the block and press
SHIFT and TAB.

• If you have manually inserted spaces for tabs, then pressing SHIFT
TAB will only outdent by only one space.

Cursor Positioning, Allow cursor positioning past end of line - If checked, the
cursor will be allowed to be placed anywhere within the text editor. This includes any
white-space area. Disabling this option will force the cursor to the end of the current
line selected when the cursor is clicked on any white-space past the end of the line.

Tab Size - The number of spaces that equal 1 tab character.

Insert Spaces for tabs - Spaces will be inserted in place of the tab character.
10 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Target Devices Tab

Execute SIMPL+ Cross Compiler - After target files are compiled, the cross
compiler can be launched from the SIMPL+ environment. This will enable you to
generate the target file that will be uploaded to the operating system. Normally, the
SIMPL Windows environment will handle this, since it is responsible for uploading
the target file to the operating system.

Display Compile Warnings - When selected, the compiler displays all program
warnings during compile in the compile output window. The total number of
warnings will always be displayed whether this option is selected or not.

Insert Category
Displays a list of all available categories for the symbol tree in the SIMPL Windows
environment. This list is for reference only.

To specify a category for a SIMPL+ module, the #CATEGORY directive must be
used with a category specified in this list. If a category name is typed in that does not
exist in the Symbol Tree Category list, the SIMPL+ module will default to the
category type, Miscellaneous.

Symbol Tree Category List in SIMPL Windows
Language Reference Guide - DOC. 5797G SIMPL+® 11

Software Crestron SIMPL+ ®
Insert #CATEGORY Toolbar Pull-Down Menu in SIMPL+

Symbol Tree Category Pop-Up Window

Category Selection Insertion Box
12 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
General Information

Conventions Used

Variable names are placed in <> when discussing syntax. For example, PUSH
<variable>.

Optional parameters are placed in []. For example, when a list has many parameters,
it would be described as <var1>[, <var2>...] When discussing array notation, [] is
used for array subscripting and is not used to mark optional code.

Examples are placed in a Computer Style font, i.e.,
MyVariable = ATOI(SomeOtherVariable);

Variable Names
Variable names in SIMPL+ may be up to 30 characters long and may not contain any
of the operators specified in the “Operators” section. Valid characters in a variable
name are a-z, A-Z, 0-9, #, _, and $ but may not begin with 0-9.

Variable names may not duplicate existing function or keyword names.

Variable names in SIMPL+ are not case sensitive. For example, declaring a variable
“joe” can be used as “jOe” or “JOE” or any variation of case.

Comments
It is beneficial to comment code to make it more readable and for documentation.
Comments do not exist in any form after code generation and are not required.

SIMPL+ has two styles of comments, single line and block comments. Single line
comments start with the characters //. The rest of the line (until a carriage return) is
considered a comment. If they occur within a quoted string, such as in PRINT, they
are NOT treated as comment characters, but rather as two backslash (Hex 2F)
characters.

Examples:
PRINT(“Hello, World!\n”); // This stuff is a comment.

PRINT(“hello, // world!\n”); // This stuff is a comment,

// but the string actually

NOTE: Version 3.00.12 users: variable names may be 120 characters for 2-Series
systems.
Language Reference Guide - DOC. 5797G SIMPL+® 13

Software Crestron SIMPL+ ®
// printed is hello,

// world.

The second form of comment characters are the block comments. /* starts a block
comment and */ ends a block comment. This is useful for commenting out large
sections of code or writing large sections of documentation. Note that nested
comments are not supported. Also, if /* or */ appear inside of a quoted string such as
in an PRINT statement, they are not considered comments but part of the string.

Examples:
/*

This

is

all

a comment!

*/

PUSH Trig

{

// code that does something.

}

Relative Path Names for Files

Your current working directory is reset to the default (“\” or root) whenever
“StartFileOperations” is performed. It is changed only by “SetCurrentDirectory”.

File names can consist of full path names or relative path names.

• Full path names have the same restrictions as DOS file names in
characters and format, with a maximum length of 256 characters.

• Relative path names do not begin with a “\” and start from the current
working directory.
14 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Operators

Operators Overview

SIMPL+ operators perform functions between two or more variables. SIMPL+
operators consist of Arithmetic, Bitwise, and Rational Operators.

Arithmetic Operators

Bitwise Operators

OPERATOR NAME EXAMPLE EXPLANATION
- Negation -X Negate the value of X (2’s Complement of X).
* Multiplication X *Y Multiply X by Y (signed arithmetic).
/ Unsigned Division X / Y Divide X by Y, truncates result (unsigned arithmetic).
S/ Signed Division X S/ Y Divide X by Y, truncates result (signed arithmetic).
MOD Signed Modulo X MOD Y Remainder after dividing X by Y (signed arithmetic).
UMOD Unsigned Modulo X UMOD Y Remainder after dividing X by Y (unsigned arithmetic).

Only 2-Series Systems.
+ Addition X + Y Add the value of Y to X.
- Subtraction X - Y Subtract the value of Y from X.

OPERATOR NAME EXAMPLE EXPLANATION
<< Shift Left X << Y Shift X to the left by Y bits; 0 is Shifted in.
>> Shift Right X >> Y Shift X to the right by Y bits; 0 is Shifted in.
{{ Rotate Left X {{ Y Rotate X to the left by Y bits; full 16 bits used. Same as

RotateLeft().
}} Rotate Right X }} Y Rotate X to the right by Y bits; full 16 bits used. Same as

RotateRight().
NOT 1's Complement NOT(X) Change 0 bits to 1, 1 bits to 0.
& Bitwise AND X & Y AND the bits of X with the bits of Y.
| Bitwise OR X | Y OR the bits of X with the bits of Y.
^ Bitwise XOR X ^ Y XOR the bits of X with the bits of Y.

NOTE: For the Shift and Rotate operators, only the lower 5-bits of Y are used, giving
values of Y ranging from 0 to 31. For example, if Y=600, the lower 5-bits equate to
24. Rotating a 16-bit number through 16 positions gives the original number back.
Therefore, for rotating 24, the result is equivalent to rotating through 8. Shifting
greater than 16 will always give a 0 as a result.
Language Reference Guide - DOC. 5797G SIMPL+® 15

Software Crestron SIMPL+ ®
Relational Operators

All of the above operators, with the exception of the negation (-), NOT, and
complement (!) operators, are called binary operators. Binary operators take two
values, perform an operation, and return a third value as a result. For example, 5 + 6
would return the value of 11. The arguments for a given operator are called its
operands. In the above example, the + sign is the operator and 5 and 6 are the
operands.

The negation, NOT, and complement operators are called unary operators, which
means it takes a single number and performs an operation. In this case, the negation
operator performs a negate, or 2's complement. A 2's complement takes a 16-bit
number, bitwise inverts it, and adds 1. The operand in a negation is the value being
negated. Operands do not have to be simple numbers. They may also be variables or
the results of a function call. For example, in the expression -X, the - sign is the
operator and the variable X is the operand.

OPERATOR NAME EXAMPLE EXPLANATION
= Comparison X = Y True if X is equal to Y, False otherwise.
= Assignment X = Y Assigns the contents in Y to X. The assignment

operator cannot be used within expressions.
! Complement ! X If X = 0, X changes to 1. If X is different from 0,

evaluates to 0.
<> Not Equal To X <> Y X is not equal to Y.
< Unsigned Less Than X < Y X is less than Y (unsigned).
> Unsigned Greater X > Y X is greater than Y (unsigned).
<= Unsigned Less Than or Equal X <= Y X is less or equal to Y (unsigned).
>= Unsigned Greater Than or Equal X >= Y X is greater or equal to Y (unsigned).
S< Signed Less Than X S< Y X is less than Y (signed).
S> Signed Greater Than X S> Y X is greater than Y (signed).
S<= Signed Less Than or Equal X S<= Y X is less or equal to Y (signed).
S>= Signed Greater Than or Equal X S>= Y X is greater or equal to Y (signed).
&& Logical AND X && Y True if X and Y are both non-zero. False

otherwise.
|| Logical OR X || Y True if either X or Y is non-zero. False otherwise.
16 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
String Operators

For less than and greater than operations, the string is evaluated in ASCII order. For
example, the comparison “ABC” > “ABD” would be false. The system looks
character by character; the first two characters are identical in both strings, and when
it evaluated the characters C (ASCII 67) vs. D (ASCII 68), the result is false. The
comparison “ABC”<“ABCD” is true because a shorter string alphabetically precedes
one that is identical but longer.

OPERATOR NAME EXAMPLE EXPLANATION
= Assignment* A$ = B$ Assigns the value in B$ to A$.
*NOTE: Not allowed in expressions because of possible confusion with comparison.
= Comparison A$ = B$ A$ equal B$
<> Not Equal To A$ <> B$ A$ is not equal to B$
< Less Than A$ < B$ A$ is less than B$
> Greater Than A$ > B$ A$ is greater than B$
Language Reference Guide - DOC. 5797G SIMPL+® 17

Software Crestron SIMPL+ ®
Signed vs Unsigned Arithmetic
ANALOG_INPUT, ANALOG_OUTPUTs, and INTEGER in SIMPL+ are 16-bit
quantities. A 16-bit quantity can range from 0 - 65535 when it is treated without
having a sign (positive or negative). If a 16-bit number is treated as signed in
SIMPL+, the range becomes -32768 to 32767. The range from -32768 to -1 maps into
32768 to 65535. Expressed mathematically, the mapping is 65536 -
AbsoluteValue(Number). The values are treated differently depending on whether
signed or unsigned comparisons are used. Another way is as follows.

Assignments may be directly done with negative constants, for example:
 INTEGER I, J;

 I = -1;

 J = 65535;

Results in I being equivalent to J.

Example:
 IF (65535 S> 0)

 X=0;

 ELSE

 X=1;

Above, the value of X is set to 1 since in signed arithmetic, 65535 is the same as -1,
which is not greater than 0.

 IF (65535 > 0)

 X=0;

 ELSE

 X=1;

Above, the value of X is set to 0 since in unsigned arithmetic, 65535 is greater than 0.

Signed 0 - 32767 32768 - 65535

Unsigned 0 - 32767 -32768 - -1
18 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Datatype Conversions

SOURCE DESTINATION ACTION
INTEGER LONG_INTEGER Lower 2 bytes of destination = source.

Upper 2 bytes cleared.
INTEGER SIGNED_INTEGER The 2 bytes of source moved to destination.

2 byte number now treated as signed.
INTEGER SIGNED_LONG_INTEGER Lower 2 bytes of destination = source.

Upper 2 bytes cleared.
LONG_INTEGER INTEGER Lower 2 bytes of source moved to destination,

treated as unsigned.
LONG_INTEGER SIGNED_INTEGER Lower 2 bytes of source moved to destination,

treated as signed.
LONG_INTEGER SIGNED_LONG_INTEGER The 4 bytes of destination = source, now treated as

signed.
SIGNED_LONG_INTEGER INTEGER Lower 2 bytes of source moved to destination.
SIGNED_LONG_INTEGER SIGNED_INTEGER Lower 2 bytes of source moved to destination.
SIGNED_LONG_INTEGER LONG_INTEGER The 4 bytes of destination = source, now treated as

unsigned.
SIGNED_INTEGER INTEGER Lower 2 bytes of source moved to destination, 2 byte

number now treated as unsigned.
SIGNED_INTEGER LONG_INTEGER 2 byte source is sign extended to 4 bytes
SIGNED_INTEGER SIGNED_LONG_INTEGER 2 byte source is sign extended to 4 bytes
Language Reference Guide - DOC. 5797G SIMPL+® 19

Software Crestron SIMPL+ ®
Operator Precedence & Grouping
In an expression where many operators are present, some operators have “priority”
over others. Operators with the same precedence level are evaluated strictly left to
right. Grouping is used to change the way an expression is evaluated.

Operator Precedence & Grouping

As an example, the expression:
 3+5*6

Evaluates to 33 since the multiplication is performed first. It may be beneficial to use
grouping to show which operations are performed first. Grouping is simply starting
an expression with '(' and ending with ')'. Therefore, the expression 3+5*6 is
equivalent to 3+(5*6). Grouping is very important if you want to override the default
behavior and have one piece of the expression evaluated first. Therefore, to make sure
the + is evaluated first, the expression is written as (3+5)*6, for a result of 48.

PRECEDENCE LEVEL OPERATORS
1 - (Negate)
2 ! NOT
3 * / S/ MOD
4 + -
5 {{ }}
6 << >>
7 > < >= <= S> S> S>= S<=
8 = <>
9 &
10 ^
11 |
12 &&
13 ||
20 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Numeric Formats
Numeric (Integer) constants may be expressed in three formats; decimal,
hexadecimal, or quoted character.

Decimal constants are specified by writing a decimal number. Hexadecimal constants
are specified by prefacing the hex constant by 0x. Quoted character constants are a
single character placed between single quotes (') and have the numeric value
specified on an ASCII chart.

Example:
INTEGER I;

I=123; // Specify Decimal constant.

I=0xABC; // Specify a Hexadecimal constant (Decimal value
2748)

I='A'; // Specify a character constant (Decimal value 65)

INTEGER K;

K=54; // Specify Decimal constant

K=0x36; // Specify a Hexadecimal Constant (Decimal

 // Value 54)

K='6'; // All three of these are the same value

 // (Decimal value 54)

The three forms may be used interchangeably and are used to make code more
readable.

Example:
STRING A$[10], B$[10], C$[10];

INTEGER I;

BUFFER_INPUT COM_IN$[50];

// A$, B$, and C$ contain identical values

// after these lines run.

A$=CHR('A');

B$=CHR(65);

C$=CHR(0x41);

// Preserve the lower nibble of a word, mask the rest out.

I = VAL1 & 0x000F;

// Read until a comma is detected in the stream.

DO

{

I = GetC(COM_IN$)

}

UNTIL (I = ',');
Language Reference Guide - DOC. 5797G SIMPL+® 21

Software Crestron SIMPL+ ®
Task Switching

Task Switching for X-Generation (CNX) Control Systems

Each SIMPL+ module runs as a separate task in the X-Generation (CEN-TVAV,
CNMSX-AV/PRO, CNRACKX/-DP) Control System. In order to insure that no
SIMPL+ program takes up too much time, each task is allotted a certain amount of
time to run. If the task exceeds this time limit, the system will switch out and allow
other tasks (including the SIMPL program) to run.

The system will not arbitrarily switch out at any point in time. Even if the task limit
is exceeded, the system will force a task switch only at predetermined points.

The system will perform a task switch when a PROCESSLOGIC, DELAY, or
PULSE function is encountered. When a task switch is performed, the output I/O
definitions are updated (refer to ANALOG_OUTPUT, DIGITAL_OUTPUT,
STRING_OUTPUT for further information). Note that a WAIT does not cause a task
switch.

When a WHILE, DO-UNTIL, or FOR construct encounters its last statement, or any
construct that causes a “backwards branch”, the system checks to see if a timeout has
occurred. If the timeout has occurred, then the system will task switch away. When
the module is given time to run, it will resume at the top of the construct.

For this reason, a designer of a SIMPL+ module should take care to design with this
in mind. A particular concern is if the outputs need to be updated in a specific fashion
and have a loop, which may potentially cause the system to switch away. One
solution would be to store the output variables in intermediate arrays or variables, and
assign the intermediate variables to the output variables before the event terminates.

Example:
 DIGITAL_INPUT trig;

 ANALOG_OUTPUT i;

 INTEGER j;

 PUSH trig

 {

 j=0;

 FOR(j=0 to 32000)

 {

 i = j;

 }

 }
22 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
A SIMPL program drives the trig signal and monitors the state of the analog_output
with an ANALOG DEBUGGER (Speedkey: TEST2) symbol. If the system did not
task switch out, the only TEST2 output would show 32000. If this program were run,
there would be many outputs, indicating each time the FOR loop exceeded the
allotted time, the SIMPL program would be given time to run and the TEST2 symbol
would post the results.

 If it were critical that the analog_output were only updated with the final value, the
following alternative solution could be used:

 DIGITAL_INPUT trig;

 ANALOG_OUTPUT i;

 INTEGER j, q;

 PUSH trig

 {

 j=0;

 FOR(j=0 to 32000)

 {

 q = j;

 }

 i = q;

 }

This program output would only show the final result; the TEST2 would be triggered
once with the value 32000. The system will still perform whatever task switching it
requires.

When an event has task switched away, it is possible that the event may be retriggered
and a new copy of the event will start running. Therefore, SIMPL+ events are
considered to be re-entrant. The event may be reentered only a limited number of
times before an Rstack overflow error occurs (refer to “Common Runtime Errors”
that begins on page 302). In order to prevent the event from running multiple times,
consider the following example:

 DIGITAL_INPUT trig;

 INTEGER I;

 PUSH trig

 {

 FOR(I = 0 TO 32000)

 {

 // code

 }

 }

This code will task switch away at some point in the FOR loop. If trig is hit again
while the event is task switched out, a new copy will run. This code can be changed
to prevent multiple copies from running.

 DIGITAL_INPUT trig;

 INTEGER I, Running;

 PUSH trig

 {

 IF(!Running)
Language Reference Guide - DOC. 5797G SIMPL+® 23

Software Crestron SIMPL+ ®
 {

 Running = 1;

 FOR(I = 0 TO 32000)

 {

 // code

 }

 Running = 0;

 }

 }

 FUNCTION MAIN()

 {

 Running = 0;

 }

In this case, a new variable, Running is declared and set to 0 on system startup in the
MAIN. When the event is triggered, if Running is 0, then it will be set to 1, and the
FOR loop will execute. Assume now the event has a task switch. If trig is hit again,
the event will start, but will immediately exit because IF statement evaluates to false.
When the task resumes, and ultimately completes, Running will be set to 0 again so
the bulk of the function may execute again.

NOTE: The event is STILL reentering. It is being forced to terminate immediately
and prevent reentry more than one level deep.
24 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Task Switching for 2-Series Control Systems

In the 2-Series Control Systems, each SIMPL+ module also runs as one or more
concurrent tasks in the control system. The MAIN and each event handler run as
separate tasks sharing a common global data space.

To insure that no SIMPL+ program takes too much time, each task is allotted a certain
amount of time to run. If the task exceeds this time limit, the system will switch out
and allow other tasks (including the SIMPL program) to run. It should also be noted
that the task would run until it has completed the operation, the allotted time expires
or a task switching call is executed.

Unlike the X-Generation systems, the system will arbitrarily switch out at any point
in time. If this may result in undesirable behavior, then the programmer should
control his task switching by issuing a PROCESSLOGIC function.

The system will perform a task switch when a PROCESSLOGIC or DELAY function
is encountered. The PULSE will no longer cause a task switch because it is no longer
needed for the logic processor to process the digital output pulse. Note that a WAIT
does not cause a task switch but will execute in its own task.

All outputs are processed by the logic processor as soon as assigned. As soon as the
SIMPL+ module releases the processor, all the outputs are seen by the logic
processor. Also, the programmer can read back DIGITAL_OUTPUTS and
ANALOG_OUTPUTS without having to insert a PROCESSLOGIC in between.

To use the example from the Task Switching for X-Generation Control System
discussion:

 DIGITAL_INPUT trig;

 ANALOG_OUTPUT i;

 ANALOG_OUTPUT NewNumber;

 INTEGER j;

 PUSH trig

 {

 j=0;

 NewNumber = 1234;

 j = NewNumber; //j = 1234, not old value of NewNumber

 FOR(j=0 to 32000)

 {

 i = j;

 }

 }

A SIMPL program drives the trig signal and monitors the state of
ANALOG_OUTPUT with an ANALOG DEBUGGER (Speedkey: TEST2) symbol.
The TEST2 output would show all numbers from 0 to 32000. If it were critical that
the ANALOG_OUTPUT were only updated with the final value, the following
alternative solution could be used:

 DIGITAL_INPUT trig;

 ANALOG_OUTPUT i;

 INTEGER j, q;
Language Reference Guide - DOC. 5797G SIMPL+® 25

Software Crestron SIMPL+ ®
 PUSH trig

 {

 j=0;

 FOR(j=0 to 32000)

 {

 q = j;

 }

 i = q;

 }

This program output would only show the final result; the TEST2 would be triggered
once with the value 32000. The system will still perform whatever task switching
required. As with the X-Generation series, re-entrance can still be a problem. When
an event has task switched away, the event may be retriggered and a new copy of the
event will start running. Therefore, SIMPL+ events are considered to be re-entrant.
The amount of times that this could occur is dependent upon the available memory in
the system. In order to prevent the event from running multiple times, refer to the re-
entrant example in the X-Generation task switching section.

The programmer should exercise caution when using looping constructs without
constraints (i.e. while(1)) or depend upon outside influence. Because each event will
run for the allotted time unless specified otherwise, PROCESSLOGIC calls should
be used to reduce the CPU overhead. Consider the following:

 DIGITAL_INPUT diInput1, diInput2;

 INTEGER I, LastNumSeconds;

 PUSH diInput1

 {

 WHILE (diInput1)

 {

 // do something

 }

 }

 main()

 {

 LastNumSeconds = 0;

 WHILE (1)

 {

 seconds = GetNumSeconds();

 IF (seconds <> LastNumSeconds)

 {

 // do something

 }

 }

 }

At the loop in MAIN, the programmer wants to perform an operation every second.
This code will achieve that goal. However, a side effect of the code is that every time
the task is scheduled to run, it will sit in a very tight loop checking for a change in the
26 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
number of seconds. Since the allotted time for a SIMPL+ task to run is in fractions of
a second, it is very unlikely to change during the allotted time. Unless the
programmer puts in a DELAY which will put the task to “sleep” for a period of time,
this task will dominate the CPU time.

The programmer who writes the MAIN() function should also be aware that the
MAIN() function begins running when the SIMPL Windows program is initializing.
The module’s inputs do not have their programmed state until sometime after the first
break in the program execution due either to a process logic statement or expiration
of a time slice.

The PUSH event indicates a more subtle problem. The programmer wants to loop in
the event until the input diInput1 is released. Once the task containing the event is
started, it will run for its allotted time and no other inputs will change. If the signal
attached to the diInput1 signal goes low, the event will not see to the change until the
event switches out and the diInput1 low signal is processed.

The following is an alternative:
 DIGITAL_INPUT diInput1, diInput2;

 INTEGER I, LastNumSeconds;

 PUSH diInput1

 {

 WHILE (diInput1)

 {

 // do something

 ProcessLogic();

 }

 }

 MAIN()

 {

 LastNumSeconds = 0;

 WHILE (1)

 {

 seconds = GetNumSeconds();

 IF (seconds <> LastNumSeconds)

 {

 // do something

 }

 delay(10);

 }

 }

Here, a 100ms delay is put in the MAIN loop. That means that the task will only wake
up 10-times per second. It will still catch the change of the seconds to within a 1/10
of a second and lessen system requirements.

The PROCESSLOGIC call in the PUSH event handler will immediately cause a task
switch to be performed. This will allow a low transition on the diInput1 signal to be
seen immediately, making the system more responsive.
Language Reference Guide - DOC. 5797G SIMPL+® 27

Software Crestron SIMPL+ ®
One more operational difference between the X-Generation and 2-Series control
systems is the event interaction. For example:

DIGITAL_INPUT diEvent1, diEvent2;

PUSH diEvent1

 {

 PRINT(“Starting Event 1\n”);

 DELAY(500); // 5 sec delay

 PRINT (“Event 1 done\n”);

 }

PUSH diEvent2

 {

 PRINT (“Starting Event 2\n”);

 DELAY (1500); // 15 sec delay

 PRINT (“Event 2 done\n”);

 }

The output from the X-Generation system would be:
Starting Event 1

Starting Event 2

Event 2 Done

Event 1 Done

The order dictates that the second delay (15 seconds) will hold off the first delay. As
soon as the second delay has finished, the first delay is checked. Therefore, the two
events complete at approximately the same time (15 seconds).

The output from the 2-Series system would be:
Starting Event 1

Starting Event 2

Event 1 Done

Event 2 Done

The events run independently. When the 5-seconds expires for the first delay, the first
event continues and prints its message. The second delay expires 10 seconds later and
the message is displayed.

28 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Language Constructs & Functions

Language Constructs & Functions Overview

Functions take one or more comma-separated parameters and return a result. The
following template shows how each language construct and function is explained.

Name:
The name used to refer to the construct or function.

Syntax:
The SIMPL+ specific language requirements for this particular construct or function.
This section demonstrates exactly how to enter the statement in a SIMPL+ program.

For completeness, the general syntax for SIMPL+ functions is shown below:

<Return Value Type> FunctionName(<Parameter 1 Type> [,

<Parameter 2 Type> ...]);

The Types are described as STRING, INTEGER, LONG_INTEGER,
SIGNED_INTEGER, and SIGNED_LONG_INTEGER.

If a STRING is specified as a return type, a STRING or STRING_OUTPUT variable
may be used.

If an INTEGER or LONG_INTEGER is specified as a return type, an INTEGER,
LONG_INTEGER, ANALOG_OUTPUT or DIGITAL_OUTPUT may be used.

If a STRING is specified as a parameter, a STRING, STRING_INPUT,
BUFFER_INPUT or literal string (i.e. “Hello””) may be used.

If an INTEGER, LONG_INTEGER, SIGNED_INTEGER or
SIGNED_LONG_INTEGER is specified as a parameter, an INTEGER,
LONG_INTEGER, ANALOG_INPUT, ANALOG_OUTPUT, DIGITAL_INPUT
or DIGITAL_OUTPUT may be used. A literal integer (i.e. 100) may also be used.
Note that for DIGITAL_OUTPUT values, a value of 0 is equivalent to digital low,
and any other value is a digital high.

Description:
General overview of what this function does.

Parameters (applies to functions only):
Specifics on each of the parameters listed.
Language Reference Guide - DOC. 5797G SIMPL+® 29

Software Crestron SIMPL+ ®
Return Value (applies to functions only):
Values placed in the return variable include error conditions. Error conditions are
results that occur if one or more of the input values does not have values that are legal
for that function.

Example:
A code example of how this function is typically used.

Version:
The version of SIMPL+ in which the construct or function was made available and
any revision notes about differences between various versions of SIMPL+. All
constructs and functions are available in all subsequent versions except where noted.

Control System:
The control system platform for which the function is valid. Unless specified, the
construct or function is valid for both X-Generation (e.g., CEN-TVAV, CNMSX-
AV/PRO, CNRACKX/-DP) and 2-Series control systems. SIMPL+ is not available
in the control systems preceding the X generation - CNMS, CNRACK/-D/-DP,
CNLCOMP/-232, and ST-CP.
30 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Arrays

Various one and two dimensional arrays are supported. All input and output arrays
are 1-based, meaning that the first element has index 1, not 0. Internal variables are
0-based, meaning that the first element has index 0. In both cases, the index of the last
element is the same as the dimension of the array.

Do not confuse the declaration of the length of STRINGs with the declaration of
arrays. E.g. STRING s$[32] is a single string of length 32, and STRING
ManyS$[10][32] is an array of 11 strings of length 32 each. You must use the BYTE
function to access the character at a particular position in a string, but you can use the
array index to access a particular string in an array of strings. Positions in a string are
1-based. Refer to the discussion of Minimum Size Arrays in Declaration Overview
on page 45.

One dimensional arrays of the following types are supported:

DIGITAL_INPUT

DIGITAL_OUTPUT

ANALOG_INPUT

ANALOG_OUTPUT

STRING_OUTPUT

BUFFER_OUTPUT

STRUCTURES

One dimensional arrays of strings are also supported, although since the declaration
also contains a string length, it looks like a 2-dimensional array:

STRING_INPUT

BUFFER_INPUT

STRING

One and two dimensional arrays of the following types are supported:

INTEGER

LONG_INTEGER

SIGNED_INTEGER

SIGNED_LONG_INTEGER
Language Reference Guide - DOC. 5797G SIMPL+® 31

Software Crestron SIMPL+ ®
Declaration Examples:

DECLARATION MEANING
DIGITAL_INPUT in[10]; 10 digital inputs, in[1] to in[10]
INTEGER MyArray[10][20]; 11 rows by 21 columns of data, from

MyArray[0][0] to MyArray[10][20]
STRING PhoneNumbers[100][32]; 101 strings that are a maximum of 32

characters long, e.g. PhoneNumbers[0] to
PhoneNumbers[100]

STRING_INPUT in$[32]; One input string called in$ that is 32 characters
long.

STRING_OUTPUT out$[10]; Ten output strings, out$1 to out$[10]. Their
length does not have to be specified.

STRING_INPUT in$[5][32]; Five input strings, in$[1] to in$[5] that are 32
characters long.

<struct_type> myStruct[10]; 11 structure elements from myStruct[0] to
myStruct[10].
32 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Directives

Compiler Directives Overview

Compiler directives are used by the SIMPL+ compiler to control attributes of the
symbol without generating the actual SIMPL+ code.

#CATEGORY

Name:
#CATEGORY

Syntax:
#CATEGORY “<category ID>”

Description:
A Category is the name of the folder in the Logic Symbols library tree where the
module is shown. To specify a category for a SIMPL+ module, the #CATEGORY
directive must be used with a category specified in the list shown in the SIMPL+
Editor. Just click "Edit" then "Insert Category" for a list of categories. Choose one
and the appropriate line of code is added to your SIMPL+ program.

Example:
#CATEGORY “6” // Lighting

If a category ID does not exist in the Symbol Tree Category list, the SIMPL+ module
will default to the Miscellaneous category type.

Version:
SIMPL+ Version 3.00

Control System:
2-Series only
Language Reference Guide - DOC. 5797G SIMPL+® 33

Software Crestron SIMPL+ ®
#CRESTRON_LIBRARY

Name:
#CRESTRON_LIBRARY

Syntax:
#CRESTRON_LIBRARY “<Crestron Library Name>”

Description:
Directs the compiler to include code from a Crestron provided library. The module
name specified is the Crestron Library Filename without the CSL extension.

Example:
#CRESTRON_LIBRARY “Special Integer Functions”

Directs the compiler to include the Crestron Library “Special Integer Functions.CSL”
from the Crestron SIMPL+ Archive.

Version:
SIMPL+ Version 3.00 - Global variables can no longer be declared within Crestron
Library (.csl) files.

SIMPL+ Version 2.00
34 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
#DEFAULT_NONVOLATILE

Name:
#DEFAULT_NONVOLATILE

Syntax:
#DEFAULT_NONVOLATILE

Description:
Program variables retain their value if hardware power is lost. The compiler will
default all variables declared within the SIMPL+ module as nonvolatile. Individual
variables can use the Volatile keyword to override this default. See also
#DEFAULT_VOLATILE on page 36.

Example:
#DEFAULT_NONVOLATILE

Version:
SIMPL+ Version 3.00

Control System:
2-Series only
Language Reference Guide - DOC. 5797G SIMPL+® 35

Software Crestron SIMPL+ ®
#DEFAULT_VOLATILE

Name:
#DEFAULT_VOLATILE

Syntax:
#DEFAULT_VOLATILE

Description:
Program variables will not retain their value if hardware power is lost. The compiler
will default all variables declared within the SIMPL+ module as volatile. Individual
variables can use the Nonvolatile keyword to override this default. See also
#DEFAULT_NONVOLATILE on page 35.

Example:
#DEFAULT_VOLATILE

Version:
SIMPL+ Version 3.00

Control System:
2-Series only. On an X-generation system, all variables are non-volatile.
36 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
#DEFINE_CONSTANT

Name:
#DEFINE_CONSTANT

Syntax:
#DEFINE_CONSTANT <constant_name> <constant_value>

Description:
Define a <constant_value> that will be substituted anywhere in the current source file
where <constant_name> is used.

Example:
#DEFINE_CONSTANT ETX 0x03

INTEGER I;

I=ETX;

Assigns the value of 0x03 to the variable I.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 37

Software Crestron SIMPL+ ®
#HELP

Name:
#HELP

Syntax:
#HELP “<help text>”

Description:
Several #HELP lines can be specified. When F1 is hit either on the symbol in the
Symbol Library, in either the Program View or the Detail view, the help text will be
displayed. If this directive or the #HELP_BEGIN … #HELP_END directive is not
present, the help text shown is “NO HELP AVAILABLE”. Note that it is preferable
to use the #HELP_BEGIN … #HELP_END directives rather than #HELP since it is
easier to edit and read the code.

Example:
#HELP “This is line 1 of my help text”

#HELP “This is line 2 of my help text”

Version:
SIMPL+ Version 1.00
38 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
#HELP_BEGIN … #HELP_END

Name:
#HELP_BEGIN … #HELP_END

Syntax:
#HELP_BEGIN

Help Text Line 1

Help Text Line 2

etc.

#HELP_END

Description:
The #HELP_BEGIN, #HELP_END pair makes it easier to create help since each line
does not need a separate #HELP directive. When F1 is hit either on the symbol in the
Symbol Library, in either the Program View or the Detail view, the help text will be
displayed. If this directive or #HELP is not present, the help text shown is “NO HELP
AVAILABLE”. Note that the text will show up exactly as typed between the begin/
end directives (including blank lines).

Example:
#HELP_BEGIN

This is help line 1.

This is help line 3.

#HELP_END

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 39

Software Crestron SIMPL+ ®
#HINT

Name:
#HINT

Syntax:
#HINT “Hint Text”

Description:
The #HINT shows up in the status bar and provides a short tactical clue as to the
function of the symbol, in the same way that Crestron-defined built-in symbols do. If
the hint is specified, it will be visible when the symbol is highlighted in the User
Modules section of the Symbol Library. The text shows up as the symbol name as it
is stored on disk, followed by a colon, followed by the text. For example, a symbol
with the name “My Symbol” might be stored on disk with the filename
MYSYM.USP. If the hint is specified as #HINT “This is my symbol!” then the status
bar will show “MYSYM.USP : This is my symbol!”. If no #HINT is specified, then
only the filename is shown.

Example:
#HINT “This module controls a CNX-PAD8 Switcher”

Version:
SIMPL+ Version 1.00
40 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
#IF_DEFINED … #ENDIF

Name:
#IF_DEFINED … #ENDIF

Syntax:
#IF_DEFINED <constant_name>

<code>

#ENDIF

Description:
Results in compilation of the <code> only if <constant_name> has previously been
defined. This construct is generally useful for putting in code for debugging purposes,
giving the ability to easily turn the debugging on and off during compilation.

Example:
#DEFINE_CONSTANT DEBUG 1

DIGITAL_OUTPUT OUT$;

INTEGER I;

FOR(I=0 to 20)

{

#IF_DEFINED DEBUG

PRINT(“Loop index I = %d\n”, I);

#ENDIF

OUT$ = ITOA(I);

}

The value of the loop is printed only if the DEBUG constant is defined. In order to
prevent compilation of the code, delete the line that defines the constant or comment
it out.

Version:
SIMPL+ Version 2.00
Language Reference Guide - DOC. 5797G SIMPL+® 41

Software Crestron SIMPL+ ®
#SYMBOL_NAME

Name:
#SYMBOL_NAME

Syntax:
#SYMBOL_NAME “<name of symbol>”

Description:
By specifying <name of symbol>, this name will show up on the header of the symbol
in the detail view as well as in the USER SIMPL+ section of the Symbol Library. If
this directive is not present, the default name shown in the Symbol Library/Program
View/Detail view is the name of the USP file as saved on disk. For example, if the
file is saved as “Checksum Program.USP”, the tree views will show “Checksum
Program” as the name.

Example:
#SYMBOL_NAME “My SIMPL+ Program”

Version:
SIMPL+ Version 1.00
42 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
#USER_LIBRARY

Name:
#USER_LIBRARY

Syntax:
 #USER_LIBRARY “<User Library Name>”

Description:
Directs the compiler to include code from a User written library. The module name
specified is the User Library Filename without the USL extension that is used by User
Libraries. Pathnames are not allowed as the USL modules are stored in the User
SIMPL+ path (refer to Edit | Preferences | Paths in SIMPL Windows). User libraries
can be created by saving a SIMPL+ module as type SIMPL+ library, instead of the
default type SIMPL+ file.

Example:
#USER_LIBRARY “My Functions”

Directs the compiler to include the User Library “My Functions.USL” from the User
SIMPL+ directory.

Version:
SIMPL+ Version 3.00 - Global variables can no longer be declared within User
Library (.usl) files.

SIMPL+ Version 2.00
Language Reference Guide - DOC. 5797G SIMPL+® 43

Software Crestron SIMPL+ ®
#IF_NOT_DEFINED … #ENDIF

Name:
#IF_NOT_DEFINED … #ENDIF

Syntax:
#IF_NOT_DEFINED <constant_name>

<code>

#ENDIF

Description:
Results in compilation of the <code> only if <constant_name> has not been
previously defined. This construct is generally useful for putting in code for
debugging purposes, giving the ability to easily turn the debugging on and off during
compilation.

Example:
#DEFINE_CONSTANT DEBUG 1

DIGITAL_OUTPUT OUT$;

INTEGER I;

FOR(I=0 to 20)

{

#IF_DEFINED DEBUG

PRINT(“Loop index I = %d\n”, I);

#ENDIF

#IF_NOT_DEFINED_DEBUG

OUT$ = ITOA(I);

#ENDIF

}

The value of the loop is only printed if the DEBUG constant is defined. The output
OUT$ is only generated if the debug constant is not defined (if debug mode is not
turned on). In order to generate “release” code, the debug constant can be deleted or
commented out.

Version:
SIMPL+ Version 2.00
44 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Declarations

Declarations Overview
Declarations control the name, type, and number of inputs and outputs on a SIMPL+
symbol. The name is shown as a cue on the symbol in SIMPL Windows and is used
as the variable name in the body of the SIMPL+ program. When the symbol is drawn
in SIMPL Windows, the inputs are shown in the order of DIGITAL_INPUTs,
ANALOG_INPUTs, STRING_INPUTs. The outputs are shown in the order of
DIGITAL_OUTPUTs, ANALOG_OUTPUTs, STRING_OUTPUTs. When
specifying a declaration, several variable names can be put after a declaration or
multiple declaration statements may be used.

For example:

ANALOG_INPUT val1, val2, val3;

is equivalent to:

ANALOG_INPUT val1, val2;

ANALOG_INPUT val3;

Allowable I/O List Combinations

SIMPL+ Version 2.00 and later gives the ability to define arrays in the Input/Output
Lists. SIMPL+ version 3.01 and later introduced the ability to declare multiple fixed-
size arrays in the input/output lists, and a minimum expanded size to variable-size
arrays.

The following are the allowable combinations:

• Zero or more DIGITAL_INPUTs

• Zero or more DIGITAL_INPUT arrays, the last is variable-size, the others are
fixed-size.

• Zero or more ANALOG_INPUTs, STRING_INPUTs, or BUFFER_INPUTs
in any combination.

• Zero or more ANALOG_INPUT, STRING_INPUT, or BUFFER_INPUT
array, the last is variable-size, the others are fixed-size.

• Zero or more DIGITAL_OUPUTs

• Zero or more DIGITAL_OUTPUT array, the last is variable-size, the others
are fixed-size.

• Zero or more ANALOG_OUTPUTs, STRING_OUTPUTs in any
combination.

• Zero or more ANALOG_OUTPUT or STRING_OUTPUT array, the last is
variable-size, the others are fixed-size.
Language Reference Guide - DOC. 5797G SIMPL+® 45

Software Crestron SIMPL+ ®
Fixed and Variable Size Arrays
Although SIMPL+ symbols can only handle one variable size DIGITAL_INPUT
array, one variable-size DIGITAL_OUTPUT array, one variable-size ANALOG/
STRING/BUFFER input array, and one variable size ANALOG/STRING/OUTPUT
array, it is convenient to be able to refer to other inputs and outputs with array
notation. Therefore, SIMPL+ allows an unlimited number of fixed-size input or
output arrays, that are essentially single input or output values but array notation can
be used. Every member of these fixed-size arrays is always shown in the symbol. All
arrays, except the last one of each kind, are fixed-size arrays. The last one is variable-
size, meaning that the symbol initially shows the first array value. The user can press
ALT+ to expand the symbol to its maximum number of array inputs or outputs. In
addition, a minimum size can be declared in all variable-size arrays, meaning that the
minimum number of array members is always shown, not just the first one, and the
array can be expanded from there.

Example:
DIGITAL_INPUT YesVotes[10]

DIGITAL_INPUT NoVotes[10}

DIGITAL_INPUT AbstainVotes[10,5];

The symbol will show 10 digital inputs labelled: YesVotes[1], YesVotes[2]
...YesVotes[10], followed by 10 more labelled: NoVotes[1], NoVotes[2]
...NoVotes[10], followed by 5 labelled: AbstainVotes[1], AbstainVotes[2]
...AbstainVotes[5]. You can continue to expand the last one up to AbstainVotes[10].

Predefined Names:
The names "on" and "off" are reserved. Assigning "on" to a variable sets the variable
to 1, assigning "off" sets that variable to 0.

The following shows equivalent, given that VALUE is a DIGITAL_OUTPUT:
VALUE = 1; and VALUE = on;

VALUE = 0; and VALUE = off;

NOTE: The minimum array size number must be from 1 to the size of the array. If a
minimum array size is specified on any array, but it is the last one within any type, it
will be a compile error.
46 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ANALOG_INPUT

Name:
ANALOG_INPUT

Syntax:
ANALOG_INPUT <var1>[,<var2>...];

ANALOG_INPUT <var[size]>;

ANALOG_INPUT <var[size[,<min>]]>

Description:
Routes analog inputs from the outside SIMPL program into a SIMPL+ program with
the specified variable names. ANALOG_INPUT values are 16-bit numbers. They are
treated as signed or unsigned values inside of a SIMPL+ program depending on the
operators or functions being used.

For an array of ANALOG_INPUTs, the maximum value of SIZE is 65535. Valid
indices are 1 through the specified size.

Example:
ANALOG_INPUT ramp1;

Signifies that one analog input is coming into the SIMPL+ program from the SIMPL
Program.

ANALOG_INPUT light_levels[25];

Signifies that up to 25 analog inputs are coming into the SIMPL+ program from the
SIMPL Program, referenced as light_levels[1] through light_levels[25]. One is
shown as a minimum but the symbol input can be expanded by the user up to 25.

ANALOG_INPUT temp_set_pts[20,4];

Signifies that up to 20 analog inputs exist, referenced as temp_set_pts[1] through
temp_set_pts[20]. Four are shown at a minimum, and the symbol inputs can be
expanded by the user up to 20.

Version:
SIMPL+ Version 2.00 for ANALOG_INPUT arrays, 3.01 for fixed arrays and
minimum sizes.
SIMPL+ Version 2.00 for ANALOG_INPUT arrays.
SIMPL+ Version 1.00 for everything else.

NOTE: ANALOG_INPUT variables may not be passed to functions in Version 3.00
for the 2-Series Control Systems. If you need to pass an ANALOG_INPUT variable
to a function, assign it to a locally declared variable and pass that variable to the
function.

NOTE: <min> is the number of inputs shown at a minimum in SIMPL Windows. The
Default is 1. The user can expand the minimum up to the full size. Only the last array
of a type can have <min>. Refer to Arrays on page 31, and Declarations on page 45.
Language Reference Guide - DOC. 5797G SIMPL+® 47

Software Crestron SIMPL+ ®
ANALOG_OUTPUT

Name:
ANALOG_OUTPUT

Syntax:
ANALOG_OUTPUT <var1>[,<var2>...];

ANALOG_OUTPUT <var[size]>;

ANALOG_OUTPUT<var[size[,<min>]]>;

Description:
Routes a value from the SIMPL+ program to the SIMPL program as an analog value.
ANALOG_OUTPUT values are 16-bit numbers. They are treated as signed or
unsigned values inside of a SIMPL+ program depending on the operators or functions
being used. Refer to the discussion on Arrays on page 46.

In X-Generation Control Systems, the logic process only sees the last analog that was
posted after the SIMPL+ module tasks switched away. Therefore, in a loop that
iterates from 1 to 10000, only a few of the values will be seen by the logic process. If
all values should be seen to by the logic process, a PROCESSLOGIC statement is
required after the assignment to the ANALOG_OUTPUT.

When the SIMPL+ program writes to the ANALOG_OUTPUT, the new value is
posted immediately. Therefore, if the value is read back after being assigned, the new
value is read back (unlike a DIGITAL_OUTPUT on X-Generation control systems).

In the 2-Series Control Systems, the logic process sees ALL values that are assigned
to the ANALOG_OUTPUT. No PROCESSLOGIC is required.

For an array of ANALOG_OUTPUTs, the maximum value of SIZE is 65535. Valid
indices are 1 through the specified size.

NOTE: ANALOG_OUTPUTs may be jammed with other analog values from a
SIMPL program (i.e., from a RAMP or other analog logic, even other SIMPL+
symbols). When such an output is jammed, the new value is read back into the
SIMPL+ symbol and the value of the output is altered.

NOTE: <min> is the number of outputs shown at a minimum in SIMPL Windows.
The Default is 1. The user can expand the minimum up to the full size. Only the last
array of a type can have <min>. Refer to Arrays on page 31, and Declarations on
page 45.
48 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
ANALOG_OUTPUT LEVEL;

Signifies that one analog input is being sent from the SIMPL+ program to the SIMPL
program.

ANALOG_OUTPUT LEVELS[25];

Signifies that up to 25 analog outputs, referred to as LEVELS[1] through
LEVELS[25] are being sent from the SIMPL+ program to the SIMPL program.

ANALOG_OUTPUT LEVELS[25,5];

Signifies same as above, except that a minimum of 5 are shown at any time.

Version:
SIMPL+ Version 3.01 - Fixed size arrays and minimum sizes.

SIMPL+ Version 3.00 - Can no longer be passed to functions by reference. (2-Series
Control Systems only)

SIMPL+ Version 2.00 for ANALOG_OUTPUT arrays.

SIMPL+ Version 1.00 for everything else.

NOTE: If LEVEL or any of the elements from LEVELS is jammed from outside the
symbol, it will take on that new jammed value.

NOTE: You should use isSignalDefined to test whether the output is connected to an
actual signal in the SIMPL Windows program before assigning a value to it. If you
assign a value and there is no signal, a message is placed in the system error log.
Language Reference Guide - DOC. 5797G SIMPL+® 49

Software Crestron SIMPL+ ®
BUFFER_INPUT
Name:
BUFFER_INPUT

Syntax:
BUFFER_INPUT <var1[max_length]>[,<var2[max_length]>...];

BUFFER_INPUT <var[size][max_length]>;

BUFFER_INPUT<var[size[,<min>]][max_length]>;

Description:
Routes serial inputs from the outside SIMPL program into a SIMPL+ program under
the specified variable names. This is used when a serial string coming from a
communications port needs to be processed by a SIMPL+ program. When new data
comes in on a BUFFER_INPUT, the data is appended to the end of a
BUFFER_INPUT. If the buffer is full, the contents are shifted up and the new data is
appended to the end. This differs from STRING_INPUTs in that new data entering
into a STRING_INPUT variable replaces the previous string contents.
BUFFER_INPUTs may be processed with string handling functions. The GETC
function may be used to read a character from the beginning of the buffer and shift
the contents up by 1. Buffer inputs may be written to, so their data space may be used
as a storage spot for doing something such as parsing through a string without
declaring temporary storage. Refer to the discussion on arrays on page 46.

MAX_LENGTH may be a value up to 255 in SIMPL+ Version 1.00. SIMPL+
Version 2.00 and later allow for MAX_LENGTH to be up to 65535. For an array of
BUFFER_INPUTs, the maximum value of SIZE is 65535. Valid indices are 1
through the specified size.

Example:
BUFFER_INPUT FromComPort[100];

Signifies that a 100 character buffer with the name “FromComPort” is specified as a
BUFFER_INPUT.

BUFFER_INPUT ComBuffers[2][100];

Signifies that two 100 character buffers have been set up that may be referenced with
the names ComBuffers[1] through ComBuffers[2].

BUFFER_INPUT ComBuffers[2,2][100];

Same as above except both are always shown on the symbol.

Version:
SIMPL+ Version 3.01 for fixed size arrays and minimum sizes.
SIMPL+ Version 2.00 for BUFFER_INPUT arrays and MAX_LENGTH to 65535.
SIMPL+ Version 1.00 for everything else.

NOTE: BUFFER_INPUT variables may not be passed to functions in Version 3.00
for the 2-Series Control Systems. If you need to pass a BUFFER_INPUT variable to
a function, assign it to a locally declared variable and pass that variable to the function.

NOTE: <min> is the number of inputs shown at a minimum in SIMPL Windows. The
Default is 1. The user can expand the minimum up to the full size. Only the last array
of a type can have <min>. Refer to Arrays on page 31, and Declarations on page 45.
50 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
DIGITAL_INPUT

Name:
DIGITAL_INPUT

Syntax:
DIGITAL_INPUT <var1>[,<var2>...];

DIGITAL_INPUT <var[size]>;

DIGITAL_INPUT <var[size[,min]]>;

Description:
Routes digital inputs from the outside SIMPL program into a SIMPL+ program under
the specified variable names. DIGITAL_INPUT values are either 0 (digital low) or 1
(digital high). Refer to the discussion on arrays on page 46.

For an array of DIGITAL_INPUTs, the maximum value of SIZE is 65535. Valid
indices are 1 through the specified size.

Example:
DIGITAL_INPUT osc_in, toggle_in;

Signifies that two digital inputs are coming into the SIMPL+ program from the
SIMPL Program.

DIGITAL_INPUT status_bits[8];

Signifies that up to eight digital inputs are coming into the SIMPL+ program from the
SIMPL Program, referenced under the names status_bits[1] through status_bits[8].

DIGITAL_INPUT flags[8,2];

Signifies up to eight digital inputs, with at least two shown.

Version:
SIMPL+ Version 3.01 for fixed arrays and minimum sizes.

SIMPL+ Version 2.00 for DIGITAL_INPUT arrays.

SIMPL+ Version 1.00 for everything else.

NOTE: DIGITAL_INPUT variables may not be passed to functions in Version 3.00
for the 2-Series Control Systems. If you need to pass a DIGITAL_INPUT variable to
a function, assign it to a locally declared variable and pass that variable to the function.

NOTE: <min> is the number of inputs shown at a minimum in SIMPL Windows. The
Default is 1. The user can expand the minimum up to the full size. Only the last array
of a type can have <min>. Refer to Arrays on page 31, and Declarations on page 45.
Language Reference Guide - DOC. 5797G SIMPL+® 51

Software Crestron SIMPL+ ®
DIGITAL_OUTPUT

Name:
DIGITAL_OUTPUT

Syntax:
DIGITAL_OUTPUT <var1>[,<var2>...];

DIGITAL_OUTPUT <var[size]>;

DIGITAL_OUTPUT <var[size[,<min>]]>;

Description:
Routes a value from the SIMPL+ program to a SIMPL program. If a value different
from 0 is placed on a DIGITAL_OUTPUT, the digital signal in the SIMPL program
is set high when the control system processes the logic.

Refer to the discussion on arrays on page 46.

In X-Generation Control Systems, if a new value is assigned to the
DIGITAL_OUTPUT from the SIMPL+ program, the value read back from it within
the SIMPL+ program will have the original state until the logic is serviced. For
example, if a DIGITAL_OUTPUT has a value of 0, and the value 1 is written to it,
the value read back will be 0 until the system processes the rest of the logic attached
to that SIMPL+ symbol. This is unlike an ANALOG_OUTPUT. If every change of
a DIGITAL_OUTPUT is required to be seen by the logic, a PROCESSLOGIC
statement is required after the assignment to the DIGITAL_OUTPUT.

In the 2-Series Control Systems, the logic process sees ALL values that are assigned
to the DIGITAL_OUTPUT. No PROCESSLOGIC is required. As an example, if the
following code is used in the 2-Series Control Systems:

DIGITAL_OUTPUT State1;

State1=1;

State1=0;

The logic will end up seeing a short pulse.

For an array of DIGITAL_OUTPUTs, the maximum value of SIZE is 65535. Valid
indices are 1 through the specified size.

NOTE: DIGITAL_OUTPUTs may be jammed with other digital values from a
SIMPL program (i.e., from a BUFFER or other jammable digital logic, even other
SIMPL+ symbols). When such an output is jammed, the new value is read back into
the SIMPL+ symbol and the value of the output is altered.

NOTE: <min> is the number of outputs shown at a minimum in SIMPL Windows.
The Default is 1. The user can expand the minimum up to the full size. Only the last
array of a type can have <min>. Refer to Arrays on page 31, and Declarations on
page 45.

NOTE: You should use isSignalDefined to test whether the output is connected to an
actual signal in the SIMPL Windows program before assigning a value to it. If you
assign a value and there is no signal, a message is placed in the system error log.
52 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
DIGITAL_OUTPUT State1, State2;

Signifies that two digital signals are to be sent to a SIMPL program from this
SIMPL+ program.

DIGITAL_OUTPUT state_bits[3];

Signifies that up to three digital signals are to be sent to a SIMPL program from this
SIMPL+ program. The names are referred to as state_bits[1] through state_bits[3].
The same jamming rules apply as in the previous example.

DIGITAL_OUTPUT state_bits[3,3];

Same as above except all three are always shown on the symbol.

Version:
SIMPL+ Version 3.01 - Fixed arrays and minimum sizes.

SIMPL+ Version 3.00 - can no longer be passed to functions by reference. (2-Series
Control Systems only)

SIMPL+ Version 2.00 for DIGITAL_OUTPUT arrays.

SIMPL+ Version 1.00 for everything else.

NOTE: For example, if State1 is jammed high via a BUFFER from outside the
SIMPL+ program, the value of State1 becomes 1 and should be handled accordingly
in the SIMPL+ code.
Language Reference Guide - DOC. 5797G SIMPL+® 53

Software Crestron SIMPL+ ®
INTEGER

Name:
INTEGER

Syntax:
INTEGER <var1>[,<var2>...];

INTEGER <var1>[size] [,<var2>[size]…];

INTEGER <var1>[rows1][columns1] [,<var2>[rows2][columns2]…];

Description:
The first form declares an integer value that is local to this SIMPL+ program.
INTEGER values are 16-bit quantities and are treated the same as ANALOG_INPUT
values and range from 0-65535.

The second form declares a one-dimensional array of INTEGER values.

The third form declares a two-dimensional array of INTEGER values. A two-
dimensional array can be thought of as a table or matrix.

The values for SIZE, ROWS, and COLUMNS may be up to 65535.

An INTEGER array element may be used anywhere an INTEGER is legal. Array
elements are referenced by using the name followed by [element] for one-
dimensional arrays or [element1][element2] for two-dimensional arrays. The element
number may range from 0 to the element size. For example, if an array is declared as
NUM[2], then legal elements are NUM[0], NUM[1], and NUM[2]. The bracket
notation is often called an array subscript.

NOTE: (X-Gen) The values of INTEGERs declared outside of functions are non-
volatile. If the system is powered down and up, the variables will take the previous
values. If programs are changed and uploaded, the values are not preserved.

NOTE: (2-Series) INTEGERs can be volatile or non-volatile. The default is defined
using the compiler directives #DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.

NOTE: If no RETURN statement is encountered, the function automatically returns
a 0.
54 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
INTEGER temp_level;

Specifies one locally declared INTEGER in this SIMPL+ program

INTEGER CommandBytes[2];

Specifies an array of three INTEGERS that can be referenced under the name
CommandBytes. In pictorial form, it appears as:

INTEGER Matrix[4][3];

Specifies a two-dimensional array of integers five rows deep by four columns wide.

In pictorial form, it appears as:

Version:
SIMPL+ Version 1.00

SIMPL+ Version 2.00 allowed INTEGER to be declared inside of functions.

CommandBytes[0] CommandBytes[1] CommandBytes[2]

Matrix[0][0] Matrix[0][1] Matrix[0][2] Matrix[0][3]

Matrix[1][0] Matrix[1][1] Matrix[1][2] Matrix[1][3]

Matrix[2][0] Matrix[2][1] Matrix[2][2] Matrix[2][3]

Matrix[3][0] Matrix[3][1] Matrix[3][2] Matrix[3][3]

Matrix[4][0] Matrix[4][1] Matrix[4][2] Matrix[4][3]

NOTE: The subscripts of an array may be an expression, i.e.:
INTEGER location[5], room;

 room = 2;

 location[room] = 10;
Language Reference Guide - DOC. 5797G SIMPL+® 55

Software Crestron SIMPL+ ®
LONG_INTEGER

Name:
LONG_INTEGER

Syntax:
LONG_INTEGER <var1>[,<var2>...];

LONG_INTEGER <var1>[size] [,<var2>[size]…];

LONG_INTEGER <var1>[rows1][columns1]

[,<var2>[rows2][columns2]…];

Description:
The first form declares a long value that is local to this SIMPL+ program.
LONG_INTEGER values are 32-bit quantities ranging from 0-4294967296.

The second form declares a one-dimensional array of LONG_INTEGER values.

The third form declares a two-dimensional array of LONG_INTEGER values. A
two-dimensional array can be thought of as a table or matrix.

The values for SIZE, ROWS, and COLUMNS may be up to 65535.

A LONG_INTEGER array element may be used anywhere a LONG_INTEGER is
legal. Array elements are referenced by using the name followed by [element] for
one-dimensional arrays or [element1][element2] for two-dimensional arrays. The
element number may range from 0 to the element size. For example, if an array is
declared as NUM[2], then legal elements are NUM[0], NUM[1], and NUM[2]. The
bracket notation is often called an array subscript.

NOTE: (2-Series) LONG_INTEGERs can be volatile or non-volatile. The default is
defined using the compiler directives #DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.
56 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
LONG_INTEGER temp_level;

Specifies one locally declared LONG_INTEGER in this SIMPL+ program

LONG_INTEGER CommandBytes[2];

Specifies an array of three LONG_INTEGERs that can be referenced under the name
CommandBytes. In pictorial form, it appears as:

LONG_INTEGER Matrix[4][3];

Specifies a two-dimensional array of LONG_INTEGERs five rows deep by four
columns wide.

In pictorial form, it appears as:

Version:
SIMPL+ Version 3.00.01

Control System
2-Series Only

CommandBytes[0] CommandBytes[1] CommandBytes[2]

Matrix[0][0] Matrix[0][1] Matrix[0][2] Matrix[0][3]

Matrix[1][0] Matrix[1][1] Matrix[1][2] Matrix[1][3]

Matrix[2][0] Matrix[2][1] Matrix[2][2] Matrix[2][3]

Matrix[3][0] Matrix[3][1] Matrix[3][2] Matrix[3][3]

Matrix[4][0] Matrix[4][1] Matrix[4][2] Matrix[4][3]

NOTE: The subscripts of an array may be an expression, i.e.:
LONG_INTEGER location[5], room;

 room = 2;

 location[room] = 10;
Language Reference Guide - DOC. 5797G SIMPL+® 57

Software Crestron SIMPL+ ®
SIGNED_INTEGER

Name:
SIGNED_INTEGER

Syntax:
SIGNED_INTEGER <var1>[,<var2>...];

SIGNED_INTEGER <var1>[size] [,<var2>[size]…];

SIGNED_INTEGER <var1>[rows1][columns1]

[,<var2>[rows2][columns2]…];

Description:
The first form declares an integer value that is local to this SIMPL+ program.
SIGNED_INTEGER values are 32-bit quantities ranging from -32678 to 32767.

The second form declares a one-dimensional array of SIGNED_INTEGER values.

The third form declares a two-dimensional array of SIGNED_INTEGER values. A
two-dimensional array can be thought of as a table or matrix.

The values for SIZE, ROWS, and COLUMNS may be up to 65535.

A SIGNED_INTEGER array element may be used anywhere an
SIGNED_INTEGER is legal. Array elements are referenced by using the name
followed by [element] for one-dimensional arrays or [element1][element2] for two-
dimensional arrays. The element number may range from 0 to the element size. For
example, if an array is declared as NUM[2], then legal elements are NUM[0],
NUM[1], and NUM[2]. The bracket notation is often called an array subscript.

NOTE: (2-Series) SIGNED_INTEGERs can be volatile or non-volatile. The default
is defined using the compiler directives #DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.
58 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
SIGNED_INTEGER temp_level;

Specifies one locally declared SIGNED_INTEGER in this SIMPL+ program

SIGNED_INTEGER CommandBytes[2];

Specifies an array of three SIGNED_INTEGERS that can be referenced under the
name CommandBytes. In pictorial form, it appears as:

SIGNED_INTEGER Matrix[4][3];

Specifies a two-dimensional array of integers five rows deep by four columns
wide. In pictorial form, it appears as:

Version:
SIMPL+ Version 3.00.06

Control System:
2-Series Only

CommandBytes[0] CommandBytes[1] CommandBytes[2]

Matrix[0][0] Matrix[0][1] Matrix[0][2] Matrix[0][3]
Matrix[1][0] Matrix[1][1] Matrix[1][2] Matrix[1][3]
Matrix[2][0] Matrix[2][1] Matrix[2][2] Matrix[2][3]
Matrix[3][0] Matrix[3][1] Matrix[3][2] Matrix[3][3]
Matrix[4][0] Matrix[4][1] Matrix[4][2] Matrix[4][3]

NOTE: The subscripts of an array may be an expression, i.e.:
SIGNED_INTEGER location[5], room;

 room = 2;

 location[room] = 10;
Language Reference Guide - DOC. 5797G SIMPL+® 59

Software Crestron SIMPL+ ®
SIGNED_LONG_INTEGER

Name:
SIGNED_LONG_INTEGER

Syntax:
SIGNED_LONG_INTEGER <var1>[,<var2>...];

SIGNED_LONG_INTEGER <var1>[size] [,<var2>[size]…];

SIGNED_LONG_INTEGER <var1>[rows1][columns1]

[,<var2>[rows2][columns2]…];

Description:
The first form declares a long value that is local to this SIMPL+ program.
SIGNED_LONG_INTEGER values are 32-bit quantities ranging from -
2,147,483,647 to 2,147,483,647.

The second form declares a one-dimensional array of SIGNED_LONG_INTEGER
values.

The third form declares a two-dimensional array of SIGNED_LONG_INTEGER
values. A two-dimensional array can be thought of as a table or matrix.

The values for SIZE, ROWS, and COLUMNS may be up to 65535.

A SIGNED_LONG_INTEGER array element may be used anywhere a
SIGNED_LONG_INTEGER is legal. Array elements are referenced by using the
name followed by [element] for one-dimensional arrays or [element1][element2] for
two-dimensional arrays. The element number may range from 0 to the element size.
For example, if an array is declared as NUM[2], then legal elements are NUM[0],
NUM[1], and NUM[2]. The bracket notation is often called an array subscript.

NOTE: (2-Series) SIGNED_LONG_INTEGERs can be volatile or non-volatile. The
default is defined using the compiler directives #DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.
60 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
SIGNED_LONG_INTEGER temp_level;

Specifies one locally declared SIGNED_LONG_INTEGER in this SIMPL+ program

SIGNED_LONG_INTEGER CommandBytes[2];

Specifies an array of three SIGNED_LONG_INTEGERs that can be referenced
under the name CommandBytes. In pictorial form, it appears as:

SIGNED_LONG_INTEGER Matrix[4][3];

Specifies a two-dimensional array of SIGNED_LONG_INTEGERs five rows deep
by four columns wide.

In pictorial form, it appears as:

Version:
SIMPL+ Version 3.00.06

Control System
2-Series Only

CommandBytes[0] CommandBytes[1] CommandBytes[2]

Matrix[0][0] Matrix[0][1] Matrix[0][2] Matrix[0][3]
Matrix[1][0] Matrix[1][1] Matrix[1][2] Matrix[1][3]
Matrix[2][0] Matrix[2][1] Matrix[2][2] Matrix[2][3]
Matrix[3][0] Matrix[3][1] Matrix[3][2] Matrix[3][3]
Matrix[4][0] Matrix[4][1] Matrix[4][2] Matrix[4][3]

NOTE: The subscripts of an array may be an expression, i.e.:
SIGNED_LONG_INTEGER location[5], room;

 room = 2;

 location[room] = 10;
Language Reference Guide - DOC. 5797G SIMPL+® 61

Software Crestron SIMPL+ ®
STRING

Name:
STRING

Syntax:
STRING <var1[size1]>[,<var2[size2]>...];

STRING <var1[num_elements1][num_characters1]>[,

<var2[num_elements2][num_characters2]>...];

Description:
Declares a string that is local to this SIMPL+ program. Strings are of arbitrary length,
so a maximum size must be specified. When a STRING variable has new data
assigned to it, the old data is lost.

When used in its second form, a one-dimensional array of strings is allocated. The
array has num_elements+1 elements, and num_characters per element allocated. The
legal indices for referencing the strings are 0 through num_elements.

The value of SIZE and NUM_CHARACTER may be up to 255 in SIMPL+ Version
1.00. In SIMPL+ Version 2.00 and later, they may be up to 65535. The value of
NUM_ELEMENTS may be up to 65535.

NOTE: Strings in Version 3.00 for the 2-Series Control Systems may not be passed
by value to a function. They must be passed by reference.

NOTE: If no Return Value is specified within an String_Function, then an empty
string (0) will be returned by default.

NOTE: (X-Gen) The values of STRINGs declared are non-volatile. If the system is
powered down and up, the variables will take on their previous values. If programs are
changed and uploaded, the values are not preserved.

NOTE: (2-Series) STRINGs can be volatile or non-volatile. The default is defined
using the compiler directives #DEFAULT_NONVOLATILE or
#DEFAULT_VOLATILE or overridden using the nonvolatile or volatile keywords.
62 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
STRING temp$[10];

Signifies that one local STRING is declared in this SIMPL+ program.

STRING temp$[2][10];

Signifies that three strings of 10 characters long have been allocated.

To assign values, the following would be legal:

temp$[0]=”Val1”;

temp$[1]=”Val2”;

temp$[2]=”Val3”;

Version:
SIMPL+ Version 2.00 for SIZE and NUM_CHARACTER up to 65535.

SIMPL+ Version 1.00 for everything else.
Language Reference Guide - DOC. 5797G SIMPL+® 63

Software Crestron SIMPL+ ®
STRING_INPUT

Name:
STRING_INPUT

Syntax:
STRING_INPUT <var1[max_size1]>[,<var2[max_size2]>...];

STRING_INPUT <var[size][max_size]>;

STRING_INPUT <var[size[,<min>]][max_size]>;

Description:
Routes serial inputs from the outside SIMPL program into a SIMPL+ program under
the specified variable names. Strings are of arbitrary length, so a maximum size must
be specified. Upon receiving new data, the value is cleared and the new string is put
in. Strings received greater than the specified size are truncated to the size in the
declaration. String inputs may be written to, so their data space may be used as a
storage spot for doing something such as parsing through a string without declaring
temporary storage. Refer to the discussion on arrays on page 46.

The value of SIZE and NUM_CHARACTER may be up to 255 in SIMPL+ Version
1.00. In SIMPL+ Version 2.00 and later, they may be up to 65535. For an array of
STRING_INPUTs, the maximum value of SIZE is 65535.

Example:
STRING_INPUT FirstName[100], SecondName[25];

Signifies that two serial inputs are coming into the SIMPL+ program from the SIMPL
Program. The first one may only be a maximum of 100 characters, the second may
only be a maximum of 25 characters. If an input is longer than the specified length,
everything after the specified limit is lost.

STRING_INPUT DataBaseNames[9][100];

Signifies that 9 serial inputs are coming into the SIMPL+ program from the SIMPL
program. Each name has a 100 character limit. The names are referenced as
DataBaseNames[1] through DataBaseNames[9].

STRING_INPUT Database Names [9,3][100];

Same as above except at least three are shown at all times.

Version:
SIMPL+ Version 3.01 for fixed arrays and minimum sizes.
SIMPL+ Version 2.00 for STRING_INPUT arrays and SIZE, NUM_CHARACTER
to 65535.
SIMPL+ Version 1.00 for everything else.

NOTE: STRING_INPUT variables may not be passed to functions in Version 3.00
for the 2-Series Control Systems. If you need to pass a STRING_INPUT variable to
a function, assign it to a locally declared variable and pass that variable to the function.

NOTE: <min> is the number of inputs shown at a minimum in SIMPL Windows. The
Default is 1. The user can expand the minimum up to the full size. Only the last array
of a type can have <min>. Refer to Arrays on page 31, and Declarations on page 45
64 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
STRING_OUTPUT

Name:
STRING_OUTPUT

Syntax:
STRING_OUTPUT <var1>[,<var2>...];

STRING_OUTPUT <var[size]>;

STRING_OUTPUT <var[size[,<min>]][size]>;

Description:
Routes serial strings from the SIMPL+ program to the SIMPL program. A string
length is not required as the output string buffer management is performed by the
operating system. Refer to the discussion on arrays on page 46.

The value of a STRING_OUTPUT cannot be read. If knowledge of the value of the
STRING_OUTPUT is required, the value to be written to the STRING_OUTPUT
can also be written to a STRING for local storage.

In X-Generation Control Systems, if several values are issued to a
STRING_OUTPUT, the logic will only see the last value written to the
STRING_OUTPUT when the SIMPL+ program task switches away. If all values are
required to be seen by the logic, a PROCESSLOGIC statement is required after
writing to the STRING_OUTPUT.

In the 2-Series Control Systems, all values written to a STRING_OUTPUT are
maintained. The logic will see each value of the STRING_OUTPUT. No
PROCESSLOGIC is required.

For an array of STRING_OUTPUTs, the maximum value of SIZE is 65535. Valid
indices are 1 through the specified size.

NOTE: These outputs may be jammed with other serial string signals in the SIMPL
program, although the value does not propagate back into the SIMPL+ symbol.

NOTE: The maximum string length for a STRING_OUTPUT is 255 characters.
Assigning a string with a length of more than 255 will result in a loss of data.

NOTE: You should use isSignalDefined to test whether the output is connected to an
actual signal in the SIMPL Windows program before assigning a value to it. If you
assign a value and there is no signal, a message is placed in the system error log.

NOTE: <min> is the number of outputs shown at a minimum in SIMPL Windows.
The Default is 1. The user can expand the minimum up to the full size. Only the last
array of a type can have <min>. Refer to Arrays on page 31, and Declarations on
page 45.
Language Reference Guide - DOC. 5797G SIMPL+® 65

Software Crestron SIMPL+ ®
Example:
STRING_OUTPUT TheName$;

Signifies one string called TheName$ that is generated by the SIMPL+ program and
sent to the SIMPL program.

STRING_OUTPUT SortedNames$[5];

Specifies five strings that are generated by the SIMPL+ program and sent to the
SIMPL program. The names are referred to as SortedNames[1] through
SortedNames[5].

STRING_OUTPUT SortedNames$[5,5];

Same as above except all five are always shown.

Version:
SIMPL+ Version 3.01 - Fixed size arrays and minimum sizes.

SIMPL+ Version 3.00 - can no longer be passed to functions by reference. (2-Series
Control Systems only)

SIMPL+ Version 2.00 for STRING_OUTPUT arrays.

SIMPL+ Version 1.00 for everything else.
66 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
STRUCTURES
A structure is a collection of one or more variables grouped together under a single
name. These variables, called structure fields or members, may consist of both integer
and string datatypes. Structures help organize related data because they allow
variables to be grouped together as a unit instead of as separate entities.

Structure datatypes can only be defined globally. Variables of a defined structure
datatype may be declared both globally and locally and passed as function arguments.
Structures are always passed to functions by reference. INTEGER,
LONG_INTEGER, SIGNED_INTEGER, SIGNED_LONG_INTEGER and
STRING are the only SIMPL+ datatypes allowed to be used as structure member
fields. INTEGER and LONG_INTEGER can include 1 and 2 dimensional arrays.
String arrays are not permitted.

The syntax for defining a structure is as follows:

STRUCTURE struct_name

{

type member1;

type member2;

.

.

.

type memberN;

};

The keyword, STRUCTURE, tells the compiler that a new datatype is being defined.
Each type is one of the SIMPL+ datatypes, INTEGER, LONG_INTEGER,
SIGNED_INTEGER, SIGNED_LONG_INTEGER or STRING. Struct_name is the
name for the structure that will be used as the new datatype.

Declaring a variable of a structure datatype is as follows:

struct_name var_name;

An example of a structure would be an entry in a phone book. The phone book
contains many entries, all containing the same three pieces of information: the
person’s name, address and phone number. The structure would be defined as
follows:

STRUCTURE PhoneBookEntry

{

STRING Name[50];

STRING Address[100];

STRING PhoneNumber[20];

};

PhoneBookEntry OneEntry;

PhoneBookEntry Entry[500];

In this example, the name, PhoneBookEntry, is the datatype defined that will
encapsulate the structure fields, Name, Address and PhoneNumber. Two variables
are then defined to be of this datatype. The variable, OneEntry, is a variable that
contains one instance of the datatype, PhoneBookEntry.
Language Reference Guide - DOC. 5797G SIMPL+® 67

Software Crestron SIMPL+ ®
The variable, Entry, is then defined to be an array of the datatype, PhoneBookEntry
consisting of 501 individual instances, namely Entry[0] to Entry[500].

To access a structure’s field, the structure’s declared variable name is used, followed
by a period (also known as the ‘dot’ or ‘dot operator’), then followed by a structure
member variable name.

From the example above, accessing the Name field from the declared variable would
be written as follows:

OneEntry.Name

or

Entry[5].Name

Using this in a SIMPL+ statement might look as follows:

If (OneEntry.Name = “David”)

Return;

If (Entry[5].Name = “David”)

Return;

Passing structures as function arguments is as follows:

FUNCTION myFunction (PhoneBookEntry argOneEntry,

PhoneBookEntry argEntry[])

{

if (argOneEntry.Name = “David”)

return;

if (argEntry[5].Name = “David”)

return;

}

Version:
SIMPL+ Version 3.00.02

Control System
2-Series Only
68 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Declaration Modifiers

Volatile

Name:
Volatile

Syntax:
Volatile

Description:
Global integer and string program variables will not retain their value if hardware
power is lost.

Example:
Volatile integer n;

Volatile string s[100];

Version:
SIMPL+ Version 3.00

Control System
2-Series Only . The X-generation compiler will give an error message saying that all
variables are non-volatile.

NOTE: This is not a declaration but a declaration modifier. It works only in
conjunction with another declaration keyword.
Language Reference Guide - DOC. 5797G SIMPL+® 69

Software Crestron SIMPL+ ®
Nonvolatile

Name:
Nonvolatile

Syntax:
Nonvolatile

Description:
Global integer and string program variables will retain their value if hardware power
is lost.

Example:
Nonvolatile integer n;

Nonvolatile string s[100];

Version:
SIMPL+ Version 3.00

Control System:
2-series only. The X-generation processors will give a message that says all variables
are non-volatile.

NOTE: This is not a declaration but a declaration modifier. It works only in
conjunction with another declaration keyword.
70 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
E-mail Functions

Important SendMail Considerations

1. In the SIMPL+ function call to “Send Mail”, the parameters “Mailserv”,
“To” and “From” fields are MANDATORY, whereas “cc”, “subject”
and “message” are not.

2. Only the “SMTP AUTH” authentication type with “LOGIN”
authentication scheme is supported for now.

3. Questions for the ISP/e-mail service provider to determine compatibility
with the SEND MAIL feature.

A. Does the ISP/service provider support NON-WEB clients?

B. Does the ISP/service provider support “SMTP AUTH”
authentication type with “LOGIN” authentication scheme?

C. For example: the e-mail provider SBC YAHOO supports web
as well as non web clients. For non web clients, one of the mail
servers to communicate with is SMTPAUTH.FLASH.NET.
This mail server supports SMTP AUTH and LOGIN auth
scheme.

4. SEND MAIL client queries the mail server to determine the
authentication type and scheme and returns an “unsupported” error
(error # -9) if the mail-server does not support LOGIN scheme; however
if the client is unable to determine information regarding the schemes
supported, it will go ahead and try to send out the e-mail to the intended
recipients, but the server may refuse to relay it to external destinations.
This will return a “failure” code, which is a POSITIVE integer (Refer to
E-mail Function Return Error Codes on page 72).

5. For mail servers needing no authentication, the “username” and
“password” field are set to an EMPTY STRING (““). Again, as in (4)
above there is no guarantee that the mail-server will relay the e-mail to
external destinations.

6. In case of an error/failure, the first occurring error/failure code is
returned.

7. If the message line exceeds 998 characters without a <CR-LF> sequence,
the SEND MAIL module automatically inserts one.

8. The “Mail-server” parameter in the SIMPL+ function call to Send Mail
can be an IP address, ex. “132.149.6.220” or a name “mail1.Mycompany
name.com”. In case of a name, DNS will be used to resolve the name,
and the control system MUST have a DNS server setup.

9. **REMINDER**: Strings in SIMPL can only be 256 characters long.
But internal to SIMPL+ they can be concatenated to a total length of
65536 characters, as long as a SIMPL+ BUFFER_INPUT type is used to
accumulate the strings.
Language Reference Guide - DOC. 5797G SIMPL+® 71

Software Crestron SIMPL+ ®
E-mail Function Return Error Codes

ERROR CODE # DESCRIPTION
SMTP_OK 0 Success

SMTP ERRORS (NONRECOVERABLE ERRORS)

ERROR CODE # DESCRIPTION
SMTP_ERROR_FATAL -1 Any non-recoverable error from the e-mail

module of the firmware (for example: if
“mailserver”, “from” and “to” are empty).

SMTP_ERROR_ILLEGAL_CMD -2 General internal error.
SMTP_ERROR_CONNECT -3 Failure to connect to the mailserver.
SMTP_ERROR_SEND -4 Internal error while actually sending out e-mail.
SMTP_ERROR_RECV -5 Internal error while actually receiving out e-mail.
SMTP_ERROR_NU_CONNECT -6 Internal error while processing the send.
SMTP_ERROR_NU_BUFFERS -7 Lack of memory buffers while processing send

or receive mail. Internal error.
SMTP_ERROR_AUTHENTICATION -8 Authentication failure.
SMTP_ERROR_AUTH_LOGIN_UNSUPPORTED -9 CLEAR TEXT login scheme is not supported.
SMTP_INV_PARAM -10 Bad parameters to SendMail. Must supply

Server, From, and To.
SMTP_ETHER_NOT_ENABLED -11 Ethernet not enabled. Cannot send mail.
SMTP_NO_SERVER_ADDRESS -12 No DNS servers configured. Cannot resolve

name.
SMTP_SEND_FAILURE -13 SendMail failed.

SMTP FAILURES (RECOVERABLE ERRORS)

ERROR CODE # DESCRIPTION
SMTP_FAILURE_TO_RCPT_COMMAND 3 There was an error sending e-mail to the “to”

recepient.
SMTP_FAILURE_CC_RCPT_COMMAND 4 There was an error sending e-mail to the “CC”

recepient.
SMTP_FAILURE_DATA_COMMAND 5 There was an error sending the message body.
72 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
SendMail

Name:
SendMail

Syntax:
SIGNED_INTEGER SendMail(STRING Server,

STRING UserLogonName,

STRING UserLogonPassword,

STRING From,

STRING To,

STRING CC,

STRING Subject,

STRING Message)

Description:
Send an e-mail message using SMTP protocol.

Parameters:
Server - Required. Specifies address of the mail server. It can either be an IP address
in dot-decimal notation (ex: 192.168.16.3) or a name to be resolved with a DNS
server (ex: mail.myisp.com). If a name is given, the control system must be
configured with a DNS server (ADDDNS console command). Maximum field
length: 40.

UserLogonName - Optional, but if authentication is not required, put an empty string
in its place. If the mail server requires authentication, UserLogonName indicates the
user name of the sender for the mail server. An empty string indicates that
authentication is not required. Only “clear text” authentication is implemented.
“Clear text” refers to the authentication method used by the mail server. If the mail
server requires a higher level authentication, mail can not be sent to the mail server.
Maximum field length: 254.

UserLogonPassword - Optional, but if authentication is not required, put an empty
string in its place. If the mail server requires authentication, UserLogonPassword
indicates the password of the sender for the mail server. An empty string indicates
that authentication is not required. Only “clear text” authentication is implemented.
“Clear text” refers to the authentication method used by the mail server. If the mail
server requires a higher level authentication, mail can not be sent to the mail server.
Maximum field length: 254.

From - Required. Specifies the e-mail address of the sender in the a@b.com format.
Only one e-mail address is allowed. Aliases or nicknames are not supported. This
argument is mandatory. Maximum field length: 242.

To - Required. Specifies the e-mail address of the recipient(s) in the a@b.com format.
Multiple recipients may be specified delimited with a “;”. This argument is
mandatory. Maximum field length: 65535.

CC - Optional , but put an empty string in its place to indicate that there are no
recipients. Specifies the e-mail address of the carbon copy recipient(s) in the
Language Reference Guide - DOC. 5797G SIMPL+® 73

Software Crestron SIMPL+ ®
a@b.com format. Multiple recipients may be specified delimited with a “;”.
Maximum field length: 65535.

Subject - Optional, but use an empty string to indicate that there is no subject.
Specifies the subject of the e-mail message. Maximum field length: 989.

Message - Optional, but use an empty string to indicate that there is no message.
Specifies the body of the e-mail message. An empty string indicates an empty
message. Maximum field length: 65535.

Return Value:
0 if successful. Otherwise, E-mail Return Error Code is returned. Negative return error
codes indicate that no part of the e-mail was sent (example: user logon password was
incorrect). Positive return error codes indicate a failure (example: one or more
recipient e-mail addresses was invalid), but the e-mail was still sent. In the event of
more than one failure, the return error code of the first failure is returned.

Example:
SIGNED_INTEGER nErr;

nErr = SendMail(“192.168.16.3”,

“UserLogonName”,

“UserLogonPassword”,

“SenderEmailAddress@crestron.com”,

“RecipientEmailAddress@crestron.com”,

“ccEmailAddress@crestron.com”,

“This is the subject”,

“This is the message”);

if (nErr < 0)

Print(“Error sending e-mail\n”);

else

Print(“SendMail successful!\n);

Version:
SIMPL+ Version 3.01.xx (Pro 2 only)
74 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Events

Events Overview

SIMPL+ is an event driven language. There are four functions which deal with
activating events in a given SIMPL+ program; CHANGE, EVENT, PUSH, and
RELEASE.

CHANGE

Name:
CHANGE

Syntax:
CHANGE <variable_name1> [, <variable_name2> ...]

{

[Local Variable Definitions]

<statements>

}

Description:
<variable_name> may be either a DIGITAL_INPUT, ANALOG_INPUT, or
STRING_INPUT type. If it is a DIGITAL_INPUT, the statements between { and }
will be executed when the input transitions from low to high or high to low. If it is an
ANALOG_INPUT or STRING_INPUT, the statements between { and } will be
executed whenever the variable changes. Note that for an ANALOG_INPUT or
STRING_INPUT, the same value re-issued will also cause the CHANGE to activate.

When using ANALOG_INPUT, BUFFER_INPUT, DIGITAL_INPUT, or
STRING_INPUT arrays, only a change in the entire array can be detected, not an
individual element. Refer to “GetLastModifiedArrayIndex” on page 93 to determine
which element actually changed. Use IsSignalDefined to ensure that you send data
only to outputs that exist or take input from signals that exist.

When listing multiple variable names, the names can be put on the same line or
broken up into several CHANGE statements for readability.

Refer to “Stacked Events” on page 80.
Language Reference Guide - DOC. 5797G SIMPL+® 75

Software Crestron SIMPL+ ®
Example:
STRING_INPUT some_data$[100];

ANALOG_OUTPUT level;

CHANGE some_data$

{

level=48;

}

When the STRING_INPUT changes, the ANALOG_OUTPUT level will have the
value 48 put into it. If the same data comes in on some_data$, the CHANGE block is
executed again.

ANALOG_INPUT ThingsToAdd[20];

ANALOG_OUTPUT Sum;

INTEGER I, Total;

CHANGE ThingsToAdd

{

Total=0;

FOR(I=0 to 20)

if (IsSignalDefined (ThingsToAdd[I]))

Total = Total + ThingsToAdd[I];

Sum = Total;

}

In this example, an array is used to hold elements to add. When any element of the
array changes, the sum is recomputed and issued on an analog output variable.

Version:
SIMPL+ Version 3.00 - local variables are allowed within CHANGE statements.

SIMPL+ Version 2.00 for ANALOG_INPUT, BUFFER_INPUT,
DIGITAL_INPUT, and STRING_INPUT arrays as <variable_name>.

SIMPL+ Version 1.00 for everything else.
76 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
EVENT

Name:
EVENT

Syntax:
EVENT

{

[Local Variable Definitions]

<statements>

}

Description:
Executes the defined <statements> anytime one of the inputs to the SIMPL+ symbol
changes. It is similar to having a CHANGE statement listed for every input, and each
change is set up to execute a common block of code. Refer to “Stacked Events” on
page 80.

Example:
ANALOG_INPUT level1, level2, level3;

STRING_INPUT extra$[2][20];

STRING_OUTPUT OUT$;

EVENT

{

OUT$=extra$[0]+extra$[1]+CHR(level1)+CHR(level2)+CHR(level3)
;

}

In this example, when the ANALOG_INPUTs level1, level2, level3, or level4 have
any change or the STRING_INPUT array extra$ has changed, the
STRING_OUTPUT OUT$ will be recomputed and reissued.

Version:
SIMPL+ Version 3.00 - Local variables are allowed within EVENT statements.

SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 77

Software Crestron SIMPL+ ®
PUSH

Name:
PUSH

Syntax:
PUSH <variable_name1> [, <variable_name2> ...]

{

[Local Variable Definitions]

<statements>

}

Description:
<variable_name> is a DIGITAL_INPUT type. On the rising edge of
<variable_name>, the statements between the opening { and closing } are executed.

When using DIGITAL_INPUT arrays, only a change in the entire array can be
detected, not an individual element. Refer to “GetLastModifiedArrayIndex” on
page 93 for a method of detecting a change to an individual element.

When listing multiple variable names, the names can be put on the same line or
broken up into several PUSH statements for readability. Refer to “Stacked Events”
on page 80.

Example:
DIGITAL_INPUT trigger;

STRING_OUTPUT output$;

PUSH trigger

{

output$ = “Hello, World!”;

}

In this example, when the DIGITAL_INPUT trigger transitions from low to high, the
STRING_OUTPUT output$ will have the string “Hello, World!” put into it.

Version:
SIMPL+ Version 3.00 - local variables are allowed within PUSH statements.

SIMPL+ Version 2.00 for DIGITAL_INPUT arrays as <variable_name>.

SIMPL+ Version 1.00 for everything else.
78 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Release

Name:
RELEASE

Syntax:
RELEASE <variable_name1> [, <variable_name2> ...]

{

[Local Variable Definitions]

<statements>

}

Description:
<variable_name> is a DIGITAL_INPUT type. On the trailing edge of
<variable_name>, the statements between the opening { and closing } are executed.

When using DIGITAL_INPUT arrays, only a change in the entire array can be
detected, not an individual element. Refer to “GetLastModifiedArrayIndex” on
page 93 for a method of detecting a change to an individual element.

When listing multiple variable names, the names can be put on the same line or
broken up into several RELEASE statements for readability. Refer to “Stacked
Events” on page 80.

Example:
DIGITAL_INPUT trigger;

STRING_OUTPUT output$;

RELEASE trigger

{

output$ = “Hello, World!”;

}

In this example, when the DIGITAL_INPUT trigger transitions from high to low, the
STRING_OUTPUT output$ will have the string “Hello, World!” put into it.

Version:
SIMPL+ Version 3.00 - local variables are allowed within RELEASE statements.

SIMPL+ Version 2.00 for DIGITAL_INPUT arrays as <variable_name>.

SIMPL+ Version 1.00 for everything else.
Language Reference Guide - DOC. 5797G SIMPL+® 79

Software Crestron SIMPL+ ®
Stacked Events
Stacked Events refers to multiple CHANGE, PUSH or RELEASE functions followed
by a single block of code (complex statement).

A typical event statement may appear as:

PUSH var1, var2

{

// code

}

SIMPL+ allows event stacking, which allows a block of code to be called from
different CHANGE, PUSH, or RELEASE statements. An example is:

STRING_INPUT A$[100];

DIGITAL_INPUT IN1, IN2, IN3, IN4;

ANALOG_INPUT LEVEL;

ANALOG_INPUT PRESETS[5];

PUSH IN1

PUSH IN2

CHANGE IN3, LEVEL, A$, PRESETS

RELEASE IN3, IN4

{

// code

}

This allows one piece of code to execute from many different types of event
statements.

NOTE: Only CHANGE, PUSH, or RELEASE functions are used in stacked events.
If necessary, refer to the descriptions of each function for details.

NOTE: An input signal can be used in more than one event function. The order
execution is as follows:

The order for a PUSH:

PUSH statements in the order they appear in the source.

CHANGE statements in the order they appear in the source EVENT statement

The order for a RELEASE:

RELEASE statements in the order they appear in the source.

CHANGE statements in the order they appear in the source EVENT statement
80 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Expressions & Statements

An expression consists of operators and operands.

i.e.,
5 * 6

or
(VAL1 + 5) / 30

or
(26 + BYTE(THESTRING$,1)) MOD Z = 25

Statements consist of function calls, expressions, assignments, or other instructions.
There are two types of statements, Simple and Complex.

A simple statement ends with a semicolon (;). Examples of simple statements are:
X = Z/10; // Simple assignment statement using

// operators.

PRINT(“Hello, World!\n”); // Simple statement using a function
// call.

CHECKSUM = ATOI(Z$) + 5; // Simple assignment statement using
// a function call and operators.

A complex statement is a collection of simple statements that start with '{' and end
with '}'. An example would be:

{ // Start of a complex statement

X = Z/10; // Simple assignment statement

// using operators.

PRINT(“Hello, World!\n”); // Simple statement using a

// function call.

CHECKSUM = ATOI(Z$) + 5; // Simple assignment statement

// using a function call and // operators.

} // End of a Complex statement

Language Reference Guide - DOC. 5797G SIMPL+® 81

Software Crestron SIMPL+ ®
Looping Constructs

Looping Constructs Overview

Loops are used to perform a section of code zero or more times in a row in a given
SIMPL+ program. The body of the loop can consist of statements, expressions,
function calls, or other loops.

DO - UNTIL

Name:
DO - UNTIL

Syntax:
DO

[{]

<statements>

[}] UNTIL (<expression>);

Description:
This loop performs a set of <statements> at least one time and will terminate when
<expression> evaluates to true. If only one statement is present in the body of the
loop, then the { and } characters are not required, but may be used. If more than one
statement is present in the loop body, then the { and } characters are mandatory. Note
that <expression> is evaluated each time through the loop.

Example:
INTEGER X;

X=0;

DO

{

X = X + 1;

PRINT(“X = %d\n”, X);

}

UNTIL (X = 25);

In this example, the loop will execute 25 times. The PRINT function will show the
value of X after it is incremented to the computer port of the control system.

Version:
SIMPL+ Version 1.00
82 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FOR

Name:
FOR

Syntax:
FOR (<variable> = <start_expression> TO <end_expression>

[STEP <step_expression>])

[{]

<statements>

[}]

Description:
This loop executes the <statements> while <variable> iterates from the value of
<start_expression> to the value of <end_expression>. The variable is incremented by
<step_expression> at the end of the loop, if STEP is specified, else it is incremented
by 1. The <step_expression> can be negative which will result in the loop counting
down. If only one statement is present in the body of the loop, then the { and }
characters are not required, but may be used. If more than one statement is present in
the loop body, then the { and } characters are mandatory. Note that
<start_expression> and <end_expression> are evaluated once before the loop starts
and are not re-evaluated during the execution of the loop. If it is defined,
<step_expression> is evaluated each pass through the loop, so <step_expression>
may be modified during execution of the loop.

In the 2-Series control systems, the <step_expression> cannot change its sign during
the execution of the loop. That is, if it is initially a positive number, then it is assumed
if it will always count up. If it is negative, it will always count down.

At the end of the loop, the loop index has the value of <end_expression> + 1 (unless
the loop index was modified in the body of the loop).

The comparisons are based on signed numbers, the maximum loop size for a step of
one would be from 1 to 32767. If larger indices are needed, for example, from 1 to
60000 a DO-UNTIL or WHILE loop could be used.

NOTE: If <variable> is set to a value greater than the <end_expression> within the
body of the FOR loop, the FOR loop will exit when it reaches the end.
Language Reference Guide - DOC. 5797G SIMPL+® 83

Software Crestron SIMPL+ ®
Example:
STRING_INPUT IN$[100];

INTEGER X;

FOR (X = 1 TO LEN(IN$))

{

PRINT(“Character %d of String %s is %s\n”, X, IN$,

MID(IN$, X, 1));

}

In this example, the loop will iterate through each character of a string and print out
the string and its position in the original string.

Version:
SIMPL+ Version 1.00
84 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WHILE

Name:
WHILE

Syntax:
WHILE(<expression>)

[{]

<statements>

[}]

Description:
This loop performs a set of <statements> as long as <expression> does not evaluate
to zero.

If only one statement is present in the body of the loop, then the { and } characters
are not required, but may be used. If more than one statement is present in the loop
body, then the { and } characters are mandatory. Note that depending on
<expression>, the body of the loop may never be executed. Note that <expression>
is evaluated at the beginning of each time through the loop.

Example:
INTEGER X;

X=0;

WHILE(X < 25)

{

X = X + 1;

PRINT(“X = %d\n”, X);

}

In this example, the loop will execute 25 times. The PRINT function will show the
value of X after it is incremented to the computer port of the control system.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 85

Software Crestron SIMPL+ ®
Branching & Decision Constructs

BREAK

Name:
BREAK

Syntax:
BREAK;

Description:
Terminates the innermost DO-UNTIL, FOR, or WHILE loop before the exit
condition is met. Execution resumes after the end of the bop.

Example:
INTEGER X;

ANALOG_INPUT Y;

X=0;

WHILE(X<25)

{

IF(Y = 69)

BREAK;

X = X + 1;

PRINT(“X=%d\n”, X);

}

In this example, the WHILE loop will terminate if the ANALOG_INPUT Y equals
the value of 69. Otherwise, the loop will exit via the normal termination condition.

Version:
SIMPL+ Version 1.00
86 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
CSWITCH

Name:
CSWITCH

Syntax:
CSWITCH (<expression>)

{

CASE (<unique integer constant>):

[{]

<statements1>

[break;]

[}]

CASE (<unique integer constant >):

[{]

<statements2>

[break;]

[}]

[DEFAULT:

[{]

<statements>

[break;]

[}]

}

Description:
CSWITCH is a more direct method of writing a complex IF-ELSE-IF statement. In
the CSWITCH, if <expression> is equal to a CASE’s constant, then the statement
block for that CASE value is executed. This same method would apply to as many
CASE statements as are listed in the body of the CSWITCH. Note that if any of the

NOTE: In SIMPL+ v3.01.00 and later, the 'break' statement is required to terminate
the case statement block that it resides within. If no 'break' statement exists, the
program will continuing executing to the next case statement block or default
statement block.

NOTE: Many CASE statements may be used in the body of the CSWITCH.
Language Reference Guide - DOC. 5797G SIMPL+® 87

Software Crestron SIMPL+ ®
<statements> blocks are only a single statement, the { and } characters on the CASE
may be omitted. If no condition is met in the CASE statements, the DEFAULT case,
if specified, is used.

CSWITCH has the restriction that the case statement only contains unique integer
constants. CSWITCH differs from SWITCH in that the operating system is able to
evaluate and execute the CSWITCH statement faster. Therefore, you should use
CSWITCH in place of SWITCH whenever unique constants are being evaluated.

Example:
ANALOG_INPUT AIN;

INTEGER X;

CSWITCH(AIN)

{

CASE (2):

{

X = 0;

break; // terminate this case statement block

}

CASE (3):

{

X = AIN;

// continue executing to next case statement block ==>
case(5)

}

CASE (5):

{

X = X + AIN + 1;

break;

}

DEFAULT:

{

PRINT(“Unknown command %d!\n”, AIN);

break;

}

}

In this example, if the value of AIN is 2, X is set equal to 0. If AIN is 3, X is set AIN
+ AIN + 1. If AIN is 5, X is set equal to AIN+1. If AIN is any other value, an error
message is printed.

Version:
SIMPL+ Version 3.00.05

Control System
2-Series Only
88 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
IF - ELSE

Name:
IF - ELSE

Syntax:
IF (<expression>)

[{]

<statements>

[}]

[ELSE]

[{]

<statements>

[}]]

Since <statements> can be an IF construct, you can string out a series of IF-ELSE-IF
statements of the form:

IF (<expression>)

[{]

<statements>

[}]

[ELSE] IF (<expression>)

[{]

<statements>

[}]]

IF (<expression>)

[{]

<statements>

[}]

[ELSE] IF (<expression>)

[{]

<statements>

[}]

[ELSE]

[{]

<statements>

[}]

NOTE: A final ELSE may be used to express default handling if none of the previous
conditions were met.
Language Reference Guide - DOC. 5797G SIMPL+® 89

Software Crestron SIMPL+ ®
Description:
Executes a piece of code only if its associated <expression> evaluates to true. Many
expressions can be tested if the IF-ELSE-IF construct is used. Note that only one
<statements> block in an IF-ELSE or IF-ELSE-IF construct is executed. In any
section of the construct, if <statements> is only a single statement, then the { and }
characters may be omitted.

Example:
STRING_INPUT IN$[100];

STRING Y$[100];

INTEGER X;

IF (IN$ = “STRING1”)

{

X=5;

Y$ = IN$;

}

ELSE

{

X=6;

Y$ = ““;

}

In this example, if IN$ is equal to STRING1, then the first two statements are
executed. If IN$ is a different value, then the second groups of statements are
evaluated. A more complex IF-ELSE-IF construct appears as:

IF (IN$ = “STRING1”)

{

X=5;

Y$ = IN$;

}

ELSE IF (IN$=”STRING2”)

{

X=6;

Y$ = ““;

}

ELSE

{

X = 7;

Y$ = “ZZZ”;

}

Version:
SIMPL+ Version 1.00
90 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
SWITCH

Name:
SWITCH

Syntax:
SWITCH (<expression>)

{

CASE (<expression1>):

[{]

<statements1>

[}]

CASE (<expression2>):

[{]

<statements2>

[}]

[DEFAULT:

[{]

<statements>

[}]

}

Description:
SWITCH is a more direct method of writing a complex IF-ELSE-IF statement. In the
SWITCH, if <expression> is equal to <expression1>, <statements1> is executed. If
<expression> is equal to <expression2>, <statements2> is executed. This same
method would apply to as many CASE statements as are listed in the body of the
SWITCH. Note that if any of the <statements> blocks are only a single statement, the
{ and } characters on the CASE may be omitted.

SWITCH has the restriction that the expressions may not be STRING expressions,
they can only be INTEGER type expressions. SWITCH may only have up to 32
CASE statements in SIMPL+ Version 1.00. If more are used, a “FULL STACK”
error results at the time of uploading the module to the control system. Version 2.00
has no restriction.

When a SWITCH is evaluated, the first matching CASE is used. If another CASE (or
more) would have matched, only the first one is used. If no condition is met in the
CASE statements, the DEFAULT case is used if specified.

NOTE: Many CASE statements may be used in the body of the SWITCH.
Language Reference Guide - DOC. 5797G SIMPL+® 91

Software Crestron SIMPL+ ®
Example:
ANALOG_INPUT AIN;

INTEGER X;

SWITCH(AIN)

{

CASE (2):

{

X = 0;

}

CASE (3):

{

X = AIN;

}

CASE (5):

{

X = AIN + 1;

}

DEFAULT:

PRINT(“Unknown command %d!\n”, AIN);

}

In this example, if the value of AIN is 2, X is set equal to 0. If AIN is 3, X is set equal
to AIN. If AIN is 5, X is set equal to AIN+1. If AIN is any other value, an error
message is printed.

Version:
SIMPL+ Version 2.00 - removes CASE restriction

SIMPL+ Version 1.00 with 32 CASE statements maximum
92 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Array Operations

Array Operations Overview

Array Operations functions are used to perform generalized operations on arrays,
such as getting bounds and setting the elements of an array to a known value in a
given SIMPL+ program.

GetLastModifiedArrayIndex

Name:
GetLastModifiedArrayIndex

Syntax:
INTEGER GetLastModifiedArrayIndex ();

Description:
Determines the specific index number of an input list array that has changed.

ANALOG_INPUT, BUFFER_INPUT, DIGITAL_INPUT, and STRING_INPUT
arrays are subject to be used in CHANGE, PUSH, and RELEASE statements, but
only the overall array can be specified in the statement, not an individual element. In
order to find out what element has been modified (and hence caused the activation of
the CHANGE, PUSH, or RELEASE), GETLASTMODIFIEDARRAYINDEX is
used.

Return Value:
The element of the array that has changed.

NOTE: To use GETLASTMODIFIEDARRAYINDEX, only one array may be used
in a single CHANGE, PUSH, or RELEASE statement. If more than one element of
the array changes at the same time, multiple events are run. For example, if D[10] is
a DIGITAL_INPUT array that is subject to a PUSH event, and D[1] and D[2] change
at the same time, the PUSH is first run where D[1] changes and
GETLASTMODIFIEDARRAYINDEX returns 1, then the PUSH is run again where
D[2] changes and GETLASTMODIFIEDARRAYINDEX returns 2.

NOTE: Using GetLastModifiedArrayIndex OUTSIDE of an event (PUSH,
RELEASE, CHANGE or EVENT) may return an index to an ambiguous signal if
more than one input array is declared within the program. Therefore, do not use this
function if more than one input signal array is declared within the program, unless you
use it within one of the event statements.
Language Reference Guide - DOC. 5797G SIMPL+® 93

Software Crestron SIMPL+ ®
Example 1 - Correct Use:
DIGITAL_INPUT LIGHT_SCENES[10], MORE_LIGHT_SCENES[10};

DIGITAL_OUTPUT INTERLOCKED_LIGHT_SCENES[10];

INTEGER I;

PUSH LIGHT_SCENES

{

FOR(I=1 to 10)

INTERLOCKED_LIGHT_SCENES[I] = 0;

ProcessLogic();

INTERLOCKED_LIGHT_SCENES[GetLastModifiedArrayIndex()] =
1;

}

Example 2 - Incorrect Use:
DIGITAL_INPUT LIGHT_SCENES[10];

DIGITAL_OUTPUT INTERLOCKED_LIGHT_SCENES[10];

INTEGER I;

PUSH LIGHT_SCENES,MORE_LIGHT_SCENES

{//this PUSH statement will be called twice (once for
LIGHT_SCENES and once for MORE_LIGHT_SCENES)

FOR(I=1 to 10)

INTERLOCKED_LIGHT_SCENES[I]=0

ProcessLogic();

INTERLOCKED_LIGHT_SCENES[GetLastModifiedArrayIndex()] =
1;

}

In this example, when one input element changes, all the output elements are set to 0
and then the output level corresponding to the changed input level is set to 1. This
mimics the functionality of the Interlock symbol in SIMPL.

Version:
SIMPL+ Version 2.00
94 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
GetNumArrayCols

Name:
GetNumArrayCols

Syntax:
INTEGER GetNumArrayCols(STRING | INTEGER ARRAY_NAME);

Description:
Finds the number of columns in a two-dimensional array or the size of the array for
a one-dimensional array.

Parameters:
ARRAY_NAME is the array as determined by the size.

Return Value:
For the data types in the table after this paragraph, the return value of
GetNumArrayCols is shown.

DATA TYPE RETURN VALUE
ANALOG INPUT X [size] Size
ANALOG INPUT X [size] Size
DIGITAL INPUT X [size] Size
DIGITAL OUTPUT X [size] Size
STRING INPUT X [size] Chars
STRING INPUT X [size] [chars] Chars
STRING OUTPUT X [size] Size
STRING X [chars] Chars
STRING X [size] [chars] Chars
INTEGER X [size] Size
INTEGER X [size 1] [size 2] Size2
SIGNED_INTEGER X [size] Size
SIGNED_INTEGER X [size1] [size2] Size2
SIGNED_LONG_INTEGER X [size] Size
SIGNED_LONG_INTEGER X [size 1] [size 2] Size2
BUFFER INPUT X [chars] Chars
BUFFER INPUT X [size] [chars] Chars
Language Reference Guide - DOC. 5797G SIMPL+® 95

Software Crestron SIMPL+ ®
Example:
DIGITAL_INPUT TEST;

INTEGER My_Array[10][20];

PUSH TEST

{

PRINT(“Columns = %d\n”, GetNumArrayCols(My_Array));

}

In this example, Columns = 20 will be printed.

Version:
SIMPL+ Version 2.00
96 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
GetNumArrayRows

Name:
GetNumArrayRows

Syntax:
INTEGER GetNumArrayRows(STRING | INTEGER ARRAY_NAME);

Description:
Returns the number of rows for two-dimensional arrays.

One-dimensional arrays return 0.

Parameters:
ARRAY_NAME is the array name as determined by the size.

Return Value:
For the data types in the table after this paragraph, the return value of
GetNumArrayRows is shown.

Example:
DIGITAL_INPUT TEST;

INTEGER My_Array[10][20];

PUSH TEST

{

PRINT(“Rows = %d\n”, GetNumArrayRows(My_Array));

}

In this example, Rows = 10 will be printed.

Version:
SIMPL+ Version 2.00

DATA TYPE RETURN VALUE
INTEGER X[size1][size2] Size 1
SIGNED_INTEGER X[size1][size2] Size 1
SIGNED_LONG_INTEGER X[size1][size2] Size 1
STRING X[chars] Size
STRING_INPUT X[size][chars] Size
BUFFER_INPUT X[size][chars] Size
Language Reference Guide - DOC. 5797G SIMPL+® 97

Software Crestron SIMPL+ ®
SetArray

Name:
SetArray

Syntax:
SetArray (ARRAY_NAME, INTEGER | STRING INIT_VALUE);

Description:
Sets every element of ARRAY_NAME to the INIT_VALUE.

Parameters:
ARRAY_NAME is the name of the array to be initialized. It may be any array type.

The INIT_VALUE may be a INTEGER or STRING. The following chart shows the
various combinations of ARRAY_NAME types and INIT_VALUE types:

Return Value:
None.

ARRAY_NAME TYPE INIT_VALUE
TYPE MEANING

INTEGER, SIGNED_INTEGER INTEGER Every element of ARRAY_NAME is set to the INTEGER
value INIT_VALUE.

INTEGER, SIGNED_INTEGER STRING Each integer in ARRAY_NAME is initialized to ATOI
(INIT_VALUE).

LONG, SIGNED_LONG_INTEGER INTEGER Every element of ARRAT_NAME is set to the LONG value
INIT_VALUE.

LONG, SIGNED_LONG_INTEGER STRING Each integer in ARRAY_NAME is initialized to ATOI
(LONG_NAME)

STRING INTEGER Each string in ARRAY_NAME is initialized to CHR
(INIT_VALUE).

STRING STRING Each string in ARRAY_NAME is set equal to INIT_VALUE. IF
INIT_VALUE is longer than the maximum size allowed in the
array, it is truncated.

NOTE: When working with DIGITAL_OUPUT arrays, if the INIT_VALUE
evaluates to 0, the digital signals are set low. For any non-zero value, the outputs are
set high.
98 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
DIGITAL_INPUT InitializeArrays;

INTEGER Levels[10];

STRING Names[5][5];

PUSH InitializeArrays

{

SetArray(Levels, 3);

SetArray(Levels, “3”);

SetArray(Names, “xyz”);

SetArray(Names, 0x41);

}

The first line initializes all elements of the integer array Levels to contain the integer
3.

The second line attempts to initialize the elements of the integer array Levels with a
string value - an ATOI is done on the “3”, which returns a 3, so that the end result is
the same as the first line.

The third line initializes all elements of the elements of the string array Names to
contain the string value “xyz”.

The fourth line attempts to initialize the elements of the string array Names with an
integer value - a CHR is done on the 0x41, which returns the string “A”, so that the
end result has all elements of the string array Names containing the string “A”.

Version:
SIMPL+ Version 2.00
Language Reference Guide - DOC. 5797G SIMPL+® 99

Software Crestron SIMPL+ ®
Bit & Byte Functions

Bit & Byte Functions Overview

These functions perform bit and byte masking operations in a given SIMPL+
program.

Bit

Name:
Bit

Syntax:
INTEGER Bit(STRING SOURCE, INTEGER SOURCE_BYTE, INTEGER

BIT_IN_BYTE);

Description:
Determine the state of a specified bit in a particular byte of a given string.

Parameters:
SOURCE contains a STRING in which a bit of one byte is to be examined. Each
character in SOURCE is considered one byte.

SOURCE_BYTE references a character in the SOURCE string. The leftmost
character in SOURCE is considered 1.

BIT_IN_BYTE specifies which bit in the SOURCE_BYTE of SOURCE is to be
examined. BIT_IN_BYTE starts at position 0 (least significant or rightmost bit of the
byte). 7 is the most significant or leftmost bit of the byte.

Return Value:
Returns 0 or 1 for a valid bit position. Illegal bit references will return 65535. It is
illegal if SOURCE_BYTE is 0 or greater than the length of the SOURCE string. Note
that it is legal to specify a bit beyond 7. This will reference a bit in another byte. In
this way, a source string can be used as a set of packed bit flags. The algorithm for
determining which bit in which byte is set when BIT_IN_BYTE is greater than 7 is
as follows:

Actual Byte in SOURCE = (BIT_IN_BYTE / 8) + SOURCE_BYTE

Actual Bit in Actual Byte = (BIT_IN_BYTE MOD 8)

Applying this to BIT (“abc”,1,16) will reference bit 0 of byte 3 (the least significant
bit of byte “c” in SOURCE).
100 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
This example takes an input string and creates an output string containing the
elements of the input string that do not have the most significant bit (bit 7) set.

STRING_INPUT SOURCE$[100];

STRING_OUTPUT OUT$;

STRING TEMP$[100];

INTEGER I;

CHANGE SOURCE$

{

FOR(I = 1 to LEN(SOURCE$))

{

IF(BIT(SOURCE$, I, 7) = 0)

{

MAKESTRING(TEMP$, “%s%s”, TEMP$, MID(SOURCE$, I, 1));

}

}

OUT$ = TEMP$;

}

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 101

Software Crestron SIMPL+ ®
Byte

Name:
Byte

Syntax:
INTEGER Byte (STRING SOURCE, INTEGER SOURCE_BYTE);

Description:
Returns the integer equivalent of the byte at position SOURCE_BYTE within a
SOURCE string.

Parameters:
SOURCE is a STRING of characters. Each character in SOURCE is considered one
byte.

SOURCE_BYTE references a character in the SOURCE string. The leftmost
character in SOURCE is considered 1.

 Return Value:
An integer containing the ASCII numeric value of the byte at position
SOURCE_BYTE in the string SOURCE. If SOURCE_BYTE is greater than the
length of the SOURCE string or is 0, 65535 is returned.

Example:
This piece of code will examine an input string to make sure that it starts with STX
character (02). From there, it will test the second byte and process different command
types accordingly.

STRING_INPUT IN$[100];
CHANGE IN$
{

IF(BYTE(IN$,1) = 02)
{

SWITCH(BYTE(IN$,2))
{

CASE (65):
{

// Process Command type 65 (A) here.
}

CASE (66):
{

// Process Command type 66 (B) here.
}
}

Version:
SIMPL+ Version 1.00
102 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
High

Name:
High

Syntax:
INTEGER High(INTEGER VALUE);

Description:
Returns the upper (most significant) 8-bits of an Integer.

Parameters:
VALUE is an integer containing the value of the most significant byte.

Return Value:
The upper 8-bits of the passed value.

Example:
ANALOG_INPUT VALUE;

CHANGE VALUE

{

PRINT(“The upper byte of %X is %X\n”, VALUE, HIGH(VALUE))

}

This will print the input value and the upper 8-bits of the value in hexadecimal. For
example, if VALUE is 0x1234, then the output is:

The upper byte of 1234 is 12.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 103

Software Crestron SIMPL+ ®
Low

Name:
Low

Syntax:
INTEGER Low(INTEGER VALUE)

Description:
Returns the lower (least significant) 8-bits of an Integer.

Parameters:
VALUE is an integer containing the value of the least significant byte.

Return Value:
The lower (least significant) 8-bits of the passed value.

Example:
ANALOG_INPUT VALUE;

CHANGE VALUE

{

PRINT(“The lower byte of %X is %X\n”, VALUE, LOW(VALUE));

}

This will print the input value and the lower 8-bits of the value in hexadecimal. For
example, if VALUE is 0x1234, then the output is:

The lower byte of 1234 is 34.

Version:
SIMPL+ Version 1.00
104 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
RotateLeft

Name:
RotateLeft

Syntax:
INTEGER RotateLeft(INTEGER X, INTEGER Y);

Description:
Rotate X to the left (more significant direction) by Y bits; full 16 bits used. Same as
{{ operator. See RotateRight on page 106.

Parameters:
X is the INTEGER to have bits rotated

Y is the amount of bits to rotate

Return Value:
An INTEGER containing the result of the rotated bits.

Example:
INTEGER X, Y, result;

result = RotateLeft(X, Y);

Version:
SIMPL+ Version 3.01.06
Language Reference Guide - DOC. 5797G SIMPL+® 105

Software Crestron SIMPL+ ®
RotateRight

Name:
RotateRight

Syntax:
INTEGER RotateRight(INTEGER X, INTEGER Y);

Description:
Rotate X to the right by Y bits; full 16 bits used. Same as }} operator. e.g.: Each bit
takes the value of the bit that is Y bits more significant than it is. The most significant
bit(s) are set from the least significant bits.

Parameters:
X is the INTEGER to have bits rotated

Y is the amount of bits to rotate

Return Value:
An INTEGER containing the result of the rotated bits.

Example:
INTEGER X, Y, result;

result = RotateRight(X, Y);

If X = 0x1234 and Y is 1 then result is 0x091A

Version:
SIMPL+ Version 3.01.06
106 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
RotateLeftLong

Name:
RotateLeftLong

Syntax:
LONG_INTEGER RotateLeftLong(LONG_INTEGER X, INTEGER Y
);

Description:
Rotate X to the left by Y bits; full 32 bits used.

Parameters:
X is the LONG_INTEGER to have bits rotated

Y is the amount of bits to rotate

Return Value:
A LONG_INTEGER containing the result of the rotated bits.

Example:
LONG_INTEGER X, Y, result;

result = RotateleftLong(X, Y);

Version:
SIMPL+ Version 3.01.06
Language Reference Guide - DOC. 5797G SIMPL+® 107

Software Crestron SIMPL+ ®
RotateRightLong

Name:
RotateRightLong

Syntax:
LONG_INTEGER RotateRightLong(LONG_INTEGER X, INTEGER Y
);

Description:
Rotate X to the right by Y bits; full 32 bits used.

Parameters:
X is the LONG_INTEGER to have bits rotated

Y is the amount of bits to rotate

Return Value:
A LONG_INTEGER containing the result of the rotated bits.

Example:
LONG_INTEGER X, Y, result;

result = RotateRightLong(X, Y);

Version:
SIMPL+ Version 3.01.06
108 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Data Conversion Functions

Data Conversion Functions Overview
These functions take one form of data (integer or string) and convert it to the opposite
type in a given SIMPL+ program. Usually, these functions are for converting number
stored in strings to integers, or for converting numbers stored in integers to strings.

Atoi

Name:
Atoi

Syntax:
INTEGER Atoi(STRING SOURCE);

Description:
Converts a STRING to an INTEGER value. The conversion looks for the first valid
character (0-9), and then reads until it finds the first invalid character. The resulting
string of valid characters is then converted. The “-” is ignored, hence the output is an
unsigned number [i.e., ATOI(“-1”) would yield 1 as the output]. If the value exceeds
65535, the value is undefined. If no valid value to convert is found, 0 is returned.

Parameters:
SOURCE is a string containing characters that range from 0 to 9 to be converted.

Return Value:
An integer representing the given string value. Example:

STRING_INPUT IN$[100];

INTEGER VAL;

CHANGE IN$

{

VAL = ATOI(IN$);

PRINT(“Value of %s after ATOI is %d\n”, IN$, VAL);

}

For example, if IN$ is “abc1234xyz”, then VAL will hold the integer 1234. If IN$ is
“-50”, then VAL will hold the integer 50.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 109

Software Crestron SIMPL+ ®
Atol

Name:
Atol

Syntax:
LONG_INTEGER Atol(STRING SOURCE);

Description:
Converts a STRING to an LONG_INTEGER value. The conversion looks for the
first valid character (0-9), and then reads until it finds the first invalid character. The
resulting string of valid characters is then converted. The “-” is ignored, hence the
output is an unsigned number [i.e., ATOL(“-1”) would yield 1 as the output]. If no
valid value to convert is found, 0 is returned. If the integer exceeds 32 bits, the value
returned is undefined.

Parameters:
SOURCE is a string containing characters that range from 0 to 9 to be converted.

Return Value:
An integer representing the given string value. Example:

STRING_INPUT IN$[100];

LONG_INTEGER VAL;

CHANGE IN$

{

VAL = ATOL(IN$);

PRINT(“Value of %s after ATOL is %ld\n”, IN$, VAL);

}

For example, if IN$ is “abc1234xyz”, then VAL will hold the number 1234. If IN$ is
“-50”, then VAL will hold the number 50.

Version:
SIMPL+ Version 3.00.02

Control System
2-Series Only
110 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Chr

Name:
Chr

Syntax:
STRING Chr(INTEGER CODE);

Description:
Takes the integer value specified and returns the corresponding ASCII character as a
one-byte string.

Parameters:
CODE contains a number from 0 to 255 to be converted into an ASCII string.

Return Value:
A string representing the code. If CODE is greater than 255, lower 8-bits of CODE
are used in the computation.

Example:
STRING_OUTPUT Code$;

ANALOG_INPUT VALUE;

CHANGE VALUE

{

Code$ = CHR(VALUE);

PRINT(“Code = %s\n”, Code$);

}

In this example, if VALUE was equal to 72, the output would be Code = H.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 111

Software Crestron SIMPL+ ®
ItoA

Name:
ItoA

Syntax:
STRING ItoA(INTEGER CODE);

Description:
Takes the value in CODE and creates a string containing the string equivalent of that
integer. The output string does not contain leading zeros.

Parameters:
CODE contains a number from 0 to 65535 to be converted into a string. CODE is
treated as an unsigned number.

Return Value:
A string representing the code. If CODE is greater than 65535, lower 16-bits of
CODE are used in the computation.

Note that the following two statements are equivalent:

out$ = itoa(CODE);

makestring(out$, “%d”, CODE);

Example:
STRING_OUTPUT Code$;

ANALOG_INPUT VALUE;

CHANGE VALUE

{

Code$ = ITOA(VALUE);

PRINT(“Code = %s\n”, Code$);

}

For example, if VALUE was equal to 25, Code$ would contain the string “25”.

Version:
SIMPL+ Version 1.00
112 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ItoHex

Name:
ItoHex

Syntax:
STRING ITOHEX(INTEGER CODE);

Description:
Takes the value in CODE and creates a string containing the hexadecimal equivalent.
The output string does not contain leading zeros and is expressed in uppercase.

Parameters:
CODE contains a number from 0 to 65535 to be converted into a hexadecimal string.
CODE is treated as an unsigned number.

Return Value:
A string representing the code. If CODE is greater than 65535, lower 16-bits of
CODE are used in the computation.

Note that the following two statements are equivalent:

out$ = itohex(CODE);

makestring(out$, “%X”, CODE);

Example:
STRING_OUTPUT Code$;

ANALOG_INPUT VALUE;

CHANGE VALUE

{

Code$ = ITOHEX(VALUE);

PRINT(“Code = %s\n”, Code$);

}

For example, if VALUE contained the integer 90, Code$ would contain the string
“5A”.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 113

Software Crestron SIMPL+ ®
LtoA

Name:
LtoA

Syntax:
STRING LtoA(LONG_INTEGER CODE);

Description:
Takes the value in CODE and creates a string containing the string equivalent of that
LONG_INTEGER. The output string does not contain leading zeros.

Parameters:
CODE contains a number from 0 to 2147483647 to be converted into a string. CODE
is treated as an unsigned number.

Return Value:
A string representing the code.

Note that the following two statements are equivalent:

out$ = ltoa(CODE);

makestring(out$, “%ld”, CODE);

Example:
STRING_OUTPUT Code$;

LONG_INTEGER VALUE;

CHANGE VALUE

{

Code$ = LTOA(VALUE);

PRINT(“Code = %s\n”, Code$);

}

For example, if VALUE was equal to 25, Code$ would contain the string “25”.

Version:
SIMPL+ Version 3.00.07

Control System
2-Series Only
114 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
LtoHex

Name:
LtoHex

Syntax:
STRING LTOHEX(LONG_INTEGER CODE);

Description:
Takes the value in CODE and creates a string containing the hexadecimal equivalent.
The output string does not contain leading zeros and is expressed in uppercase.

Parameters:
CODE contains a number from 0 to 2147483647 to be converted into a hexadecimal
string. CODE is treated as an unsigned number.

Return Value:
A string representing the code.

Note that the following two statements are equivalent:

out$ = ltohex(CODE);

makestring(out$, “%X”, CODE);

Example:
STRING_OUTPUT Code$;

LONG_INTEGER VALUE;

CHANGE VALUE

{

Code$ = LTOHEX(VALUE);

PRINT(“Code = %s\n”, Code$);

}

For example, if VALUE contained the integer 90, Code$ would contain the string
“5A”.

Version:
SIMPL+ Version 3.00.07

Control System
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 115

Software Crestron SIMPL+ ®
File Functions

File Functions Overview
File Functions perform file handle access from SIMPL+. Because of the overhead
involved with maintaining current directory and file positions, there are restrictions
on file I/O. Each SIMPL+ thread (main loop or event handler) that requires file
operations must first identify itself with the operating system. This is done with the
function, StartFileOperations. Before terminating the thread, the function
EndFileOperations must be called. Files cannot be opened across threads. In other
words, you cannot open a file in one thread (function main say) and then access the
file with the returned file handle in another (say an event handler). This is to prevent
two events from writing to different parts of a file. This means that you should open,
access and then close a file within the same thread. For example, a program might be
structured as follows:

STRING sBuf[1000];

SIGNED_INTEGER nFileHandle;

CHANGE input

{

SIGNED_INTEGER nNumRead;

StartFileOperations();

nFileHandle = FileOpen (“\\CF0\\MyFile”, _O_RDONLY);

if (nFileHandle >= 0)

{

nNumRead=FileRead(nFileHandle, sBuf, 500);
if(nNumRead<0)

Print (“Read Error\n”);

FileClose(nFileHandle);

}

EndFileOperations();

}

/**

Main()

Uncomment and place one-time startup code here

(This code will get called when the system starts up)

**/

Function Main()

{

SIGNED_INTEGER nNumWritten;

StartFileOperations();

nFileHandle = FileOpen (“\\CF0\\MyFile”, _O_WRONLY);

if (nFileHandle >= 0)

{

sBuf = “Hello World!”;

nNumWritten=FileWrite(nFileHandle, sBuf, 500);
116 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
if(nNumWritten<0) Print (“WriteError”);

FileClose(nFileHandle);

}

EndFileOperations();

}

File Function Return Error Codes
KEYWORD VALUE FUNCTION
FILE_BAD_USER -3000 Calling task is not a file user. Use

StartFileOperations() first.
FILE_NO_DISK -3004 Disk is removed.
FILE_LONGPATH -3017 Path or directory name too long.
FILE_INVNAME -3018 Path or filename includes invalid character.
FILE_PEMFILE -3019 No file descriptors available (Too many

files open).
FILE_BADFILE -3020 Invalid file descriptor.
FILE_ACCES -3021 Attempt to open a read-only file or special

(directory).
FILE_NOSPC -3022 No space to create file in this disk.
FILE_SHARE -3023 The access conflicts from multiple tasks to

a specific file.
FILE_NOFILE -3024 File not found.
FILE_EXIST -3025 Exclusive access requested, but file

already exists.
FILE_NVALFP -3026 Seek to negative file pointer.
FILE_MAXFILE_SIZE -3027 Over the maximum file size.
FILE_NOEMPTY -3028 Directory is not empty.
FILE_INVPARM -3029 Invalid Flag/Mode is specified.
FILE_INVPARCMB -3030 Invalid Flag/Mode combination.
FILE_NO_MEMORY -3031 Can't allocate internal buffer.
FILE_NO_BLOCK -3032 No block buffer available.
FILE_NO_FINODE -3033 No FINODE buffer available.
FILE_NO_DROBJ -3034 No DROBJ buffer available.
FILE_IO_ERROR -3035 Driver I/O function routine returned.
FILE_INTERNAL -3036 Internal error.
Language Reference Guide - DOC. 5797G SIMPL+® 117

Software Crestron SIMPL+ ®
Reading and Writing Data to a File
Reading and writing data to a file that is moved from one kind of a system to another
has special programming considerations because it will likely be written on one kind
of system, e.g. a PC and read on another, e.g. a Crestron control system, or vice versa.
Most programmers are used to writing programs that are both written by a PC and
read by a PC.

The best way to write to a file that must be transferred between systems is to write
pure ASCII text and use the FileRead/FileWrite routines. If you must write binary
data as binary, e.g. structures, integers, strings, arrays, please read and consider the
following.

Different kinds of systems store their internal data structures with various padding
bytes and lengths, that are not always apparent. For example, a structure declared like
this:

STRUCTURE

{

STRING s[5];

INTEGER I;

}

may contain a padding byte between the string and the integer, so the integer can
begin on a word boundary. But this padding is system and compiler dependent, as
another system or compiler may handle this data perfectly well without a padding
byte. Also, some systems store integers with their most significant byte first (the
industry term is “big-endian”) or with their least significant bytes first (“little-
endian”).

Because compact flash is meant to be transferred among different systems, Crestron
has given the programmer two different ways to store data. It can be stored with
padding bytes by writing the integers, strings, structures, etc., directly (refer to
WriteInteger, WriteString, WriteStructure, WriteIntegerArray, etc) or it can be stored
directly as a string of bytes where the programmer controls exactly what is written
(refer to FileWrite). There are corresponding functions to read each of these. Data
written by one method should be read with the corresponding function. If you must
write binary files, Crestron recommends the first way, for system independence.
Details are listed in each function.
118 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
CheckForDisk

Name:
CheckForDisk

Syntax:
INTEGER CheckForDisk()

Description:
Tests whether or not a compact flash card is currently installed in the control system.

Parameters:
None.

Return Value:
Returns 1 if a compact flash card is currently installed in the control system. Refer to
“WaitForNewDisk()” on page 184.

Example:
(Refer to “File Functions Overview” on page 116)

IF (CheckForDisk () = 1)

PRINT (“compact flash card found”);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 119

Software Crestron SIMPL+ ®
EndFileOperations

Name:
EndFileOperations

Syntax:
SIGNED_INTEGER EndFileOperations()

Description:
Signifies to the operating system that the current thread has completed its file
operations.

Parameters:
None.

Return Value:
Returns 0 if successful and –1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF (StartFileOperations() < 0);

PRINT (“Error in starting file ops\n”);

// various file operations

IF (EndFileOperations() < 0)

PRINT (“Error Occurred in ending file ops\n”);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

NOTE: StartFileOperations is required prior to any operation accessing a file.
EndFileOperations is required after finishing all file operations and prior to
terminating the thread of execution (e.g., one of the PUSH commands).
120 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileBOF

Name:
FileBOF

Syntax:
SIGNED_INTEGER FileBOF (INTEGER handle)

Description:
Tests whether or not the current file pointer is at the beginning of the file.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

Return Value:
Returns 1 if beginning of file or 0 if not end of file. Otherwise, file error code is
returned.

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle < 0)

{

PRINT(“Error Opening File MyFile\n”);

return;

}

IF (FileBOF (nFileHandle) = 1)

PRINT (“Beginning of file reached\n”);

IF (FileClose (nFileHandle) <> 0)

PRINT (“Error closing file”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 121

Software Crestron SIMPL+ ®
FileClose

Name:
FileClose

Syntax:
SIGNED_INTEGER FileClose (INTEGER handle)

Description:
Closes a file opened previously by FileOpen. You MUST close a file that was
opened, you won’t be able to open it again, or eventually the control system may hang
or reboot. A reboot clears all open files. Files must be opened and closed during a
single thread of operation. Refer to “StartFileOperations()” on page 183.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

Return Value:
Returns 0 if successful. Otherwise, file error code is returned.

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle < 0)

{

PRINT(“Error Opening File MyFile\n”);

return;

}

IF (nFileHandle > 0)

{

IF (FileClose (nFileHandle) <> 0)

PRINT (“Error closing file\n”);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
122 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileDate

Name:
FileDate

Syntax:
STRING FileDate(FILE_INFO Info, INTEGER FORMAT);

Description:
Returns a string corresponding to the current date of the specified file with the
specified FORMAT.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

FORMAT is an integer describing the way to format the date for the return. Valid
formats are 1 through 4.

FORMAT 1 returns a string in the form MM/DD/YYYY

FORMAT 2 returns a string in the form DD/MM/YYYY

FORMAT 3 returns a string in the form YYYY/MM/DD

FORMAT 4 returns a string in the form MM/DD/YY

In format 4, the year 2000 is shown as 00. Digits 58 - 99 are treated as 1958-1999 and
00-57 are treated as 2000 through 2057.

Return Value:
A STRING corresponding to the current date.
Language Reference Guide - DOC. 5797G SIMPL+® 123

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

STRING TheDate$[100];

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

TheDate$ = FileDate(FileInfo);

PRINT (“Date of file = %s\n”, TheDate$);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

This would print a string such as “Date of file = 03/25/2003”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
124 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileDay

Name:
FileDay

Syntax:
STRING FileDay(FILE_INFO Info);

Description:
Returns the day of the week of the file as a STRING.

Parameters:
INFO – structure containing the information about a found file (refer to “FindFirst”
on page 149 for description).

Return Value:
The day of the week of the file is returned in a string. Valid returns are Sunday,
Monday, Tuesday, Wednesday, Thursday, Friday, or Saturday.

Example:
(Refer to "File Functions Overview"on page 116)

STRING TheDay$[100];

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

TheDay$ = FileDay(FileInfo);

PRINT (“Day of file = %s\n”, TheDay$);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output of this would be “Day of file = Monday”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 125

Software Crestron SIMPL+ ®
FileDelete

Name:
FileDelete

Syntax:
SIGNED_INTEGER FileDelete (STRING filename)

Description:
Deletes the specified file from the file system.

Parameters:
FILENAME specifies the name of the file to delete. Can contain wildcards (*) if a
full path is not given.

Return Value:
Returns 0 if successful. Otherwise, file error code is returned.

Example:
(Refer to "File Functions Overview"on page 116)

StartFileOperations();
IF (FileDelete (“MyFile”) <> 0)

PRINT (“Error deleting file\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
126 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileEOF

Name:
FileEOF

Syntax:
SIGNED_INTEGER FileEOF (INTEGER handle)

Description:
Tests whether or not the current file pointer is at the end of the file.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

Return Value:
Returns 1 if end of file or 0 if not end of file. Otherwise, file error code is returned.

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle < 0)

{

PRINT(“Error Opening File MyFile\n”);

return;

}

IF (FileEOF (nFileHandle) = 1)

PRINT (“End of file reached\n”);

IF (FileClose (nFileHandle) <> 0)

PRINT (“Error closing file\n”);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 127

Software Crestron SIMPL+ ®
FileGetDateNum

Name:
FileGetDateNum

Syntax:
SIGNED_INTEGER FileGetDateNum(FILEINFO Info);

Description:
Returns an integer corresponding to the day of the month of the file.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The day of the month as an integer from 1 to 31.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumDateOfMonth;

FILE_INFO FileInfo;

INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

NumDateOfMonth = FileGetDateNum(FileInfo);

PRINT (“Day of the month of file = %d\n”, NumDateOfMonth);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output of this would be “Day of the month of file = 25”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
128 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileGetDayOfWeekNum

Name:
FileGetDayOfWeekNum

Syntax:
SIGNED_INTEGER FileGetDayOfWeekNum(FILEINFO Info);

Description:
Returns an integer corresponding to the day of the week of file.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The day of the week as an integer from 0 to 6; 0 represents Sunday to 6 representing
Saturday.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumDayOfWeek;

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

NumDayOfWeek = FileGetDayOfWeekNum(FileInfo);

PRINT (“Day of week of file = %d\n”, NumDayOfWeek);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output of this would be “Day of week of file = 4”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 129

Software Crestron SIMPL+ ®
FileGetHourNum

Name:
FileGetHourNum

Syntax:
SIGNED_INTEGER FileGetHourNum(FILEINFO Info);

Description:
Returns an integer corresponding to the number of hours in the time of the file.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The number of hours from 0 to 23 (24-hour time format).

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumHours;

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

NumHours = FileGetHourNum(FileInfo);

PRINT (“Hours of file time = %d\n”, NumHours);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output of this would be “Hours of file time = 22”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
130 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileGetMinutesNum

Name:
FileGetMinutesNum

Syntax:
SIGNED_INTEGER FileGetMinutesNum(FILEINFO Info);

Description:
Returns an integer corresponding to the number of minutes in the file time.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The number of minutes from 0 to 59.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumMinutes;

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

NumMinutes = FileGetMinutesNum(FileInfo);

PRINT (“Minutes of file time = %d\n”, NumMinutes);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output of this would be “Minutes of file time = 33”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 131

Software Crestron SIMPL+ ®
FileGetMonthNum

Name:
FileGetMonthNum

Syntax:
SIGNED_INTEGER FileGetMonthNum(FILEINFO Info);

Description:
Returns an integer corresponding to the month of the year of file.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149).

Return Value:
The month of the year as an integer from 1 to 12.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumMonth;

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

NumMonth = FileGetMonthNum(FileInfo);

PRINT (“Month of file date = %d\n”, NumMonth);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

End File Operations()

An example output of this would be “Month of file date = 9”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
132 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileGetSecondsNum

Name:
FileGetSecondsNum

Syntax:
SIGNED_INTEGER FileGetSecondsNum(FILEINFO Info);

Description:
Returns an integer corresponding to the number of seconds in the time of the file.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The number of seconds from 0 to 59.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumSeconds;

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

NumSeconds = FileGetSecondsNum(FileInfo);

PRINT (“Seconds of file time = %d\n”, NumSeconds);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output of this would be “Seconds of file time = 25”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 133

Software Crestron SIMPL+ ®
FileGetYearNum

Name:
FileGetYearNum

Syntax:
SIGNED_INTEGER FileGetYearNum(FILEINFO Info);

Description:
Returns an integer corresponding to the year of the file.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The year as an integer. The full year is specified. For example, the year 2000 will
return the integer 2000.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER NumYear;

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

NumYear = FileGetYearNum(FileInfo);

PRINT (“Year of file date = %d\n”, NumYear);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output from this would be “Year of file date = 2002”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
134 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FILE_INFO Structure
Use this structure to retrieve information about a file.

STRUCTURE FILE_INFO

{

STRING Name; // relative name of the found file

INTEGER iAttributes; // attributes for the file

INTEGER iTime; // file time in packed form

INTEGER iDate; // file date in packed form

LONG_INTEGER lSize; // size of the file in bytes

};

File Attribute Bit Flags - These may be Bitwise OR’ed together

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

KEYWORD ATTRIBUTE Equivalent SIMPL+ Function
ARDONLY File is marked read only IsReadOnly
AHIDDEN File is hidden IsHidden
ASYSTEM File is marked as a system file IsSystem
AVOLUME File is a volume label IsVolume
ADIRENT File is a directory IsDirectory
ARCHIVE File is marked as an archive -

NOTE: For an example of how and where to use the FILE_INFO structure, refer to
the example code in "FindFirst" on page 149.
Language Reference Guide - DOC. 5797G SIMPL+® 135

Software Crestron SIMPL+ ®
FileLength

Name:
FileLength

Syntax:
LONG_INTEGER FileLength (INTEGER handle)

Description:
Returns the length of a file.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

Return Value:
Number of bytes if successful. Otherwise, file error code is returned.

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle < 0)

{

PRINT(“Error Opening File MyFile\n”);

return;

}

IF (nFileHandle > 0)

PRINT (“Length of file = %d\n”,

FileLength (nFileHandle));

IF (FileClose (nFileHandle) <> 0)

PRINT (“Error closing file\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
136 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileMonth

Name:
FileMonth

Syntax:
STRING FileMonth(FILEINFO Info);

Description:
Returns the month of the file date as a string.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The current month is returned in a string. Valid returns are January, February, March,
April, May, June, July, August, September, October, November, or December.

Example:
(Refer to "File Functions Overview"on page 116)

STRING TheMonth$[100];

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

TheMonth$ = FileMONTH(FileInfo);

PRINT (“Month of file date = %s\n”, TheMonth$);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output of this would be “Month of file date = September”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 137

Software Crestron SIMPL+ ®
FileOpen

Name:
FileOpen

Syntax:
SIGNED_INTEGER FileOpen (STRING filename, INTEGER flags)

Description:
Opens a file.

Parameters:
FILENAME specifies the full path name or relative path name (link) of the file to
open/create.

FLAGS – File Open Flags. Can be combined using the Bitwise OR operator (|)

Return Value:
File handle if successful (>= 0). Otherwise, file error code is returned.

NOTE: One of the following flags must be specified: _O_RDONLY, _O_WRONLY,
or _O_RDWR

KEYWORD FUNCTION
_O_TEXT Unused
_O_BINARY Unused
_O_APPEND Writes done at the end of file. Mutually exclusive with

_O_TRUNC

_O_CREAT Creates file. If _O_APPEND is specified, the file will created
only if it doesn't already exist.

_O_EXCL Open succeeds only if file doesn't already exist
_O_TRUNC Truncates file. Mutually exclusive with _O_APPEND
_O_RDONLY Open file for reading only
_O_RDWR Open file for both reading and writing
_O_WRONLY Open file for writing only

NOTE: FileClose() must be called before the executing thread is terminated. Failure
to do so will result in the file being left open and locked by the control system. Should
this happen, the file will not be able to be opened again until the control system is
rebooted.
138 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Examples:
(Refer to "File Functions Overview"on page 116)

Example 1: Open a read only file:

SIGNED_INTEGER nFileHandle;
StartFileOperations();

 nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

 IF (nFileHandle < 0)

{

 PRINT(“Error Opening File MyFile\n”);

}

EndFileOperations();

Example 2: Open an existing file to log data to the end

SIGNED_INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WDONLY | _O_APPEND);

 IF (nFileHandle < 0)

{

 PRINT(“Error Opening File MyFile\n”);

}

EndFileOperations();

Example 3: Truncate an existing file and get rid of previous contents. If it does not
exist, create it.

SIGNED_INTEGER nFileHandle;
StartFileOperations();

 nFileHandle = FileOpen (“MyFile”, _O_WDONLY | _O_CREAT |
_O_TRUNC);

 IF (nFileHandle < 0)

{

 PRINT(“Error Opening File MyFile\n”);

}

EndFileOperations();

Example 4: Continue adding to the end of an existing log file, or create it if it does
not already exist.

SIGNED_INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WDONLY | _O_APPEND
| _O_CREAT);

 IF (nFileHandle < 0)

{

 PRINT(“Error Opening File MyFile\n”);

}

EndFileOperations();
Language Reference Guide - DOC. 5797G SIMPL+® 139

Software Crestron SIMPL+ ®
Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
140 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileRead

Name:
FileRead

Syntax:
SIGNED_INTEGER FileRead (INTEGER handle, STRING buffer,

INTEGER count)

Description:
Reads data from a file as a series of bytes into a buffer, starting at the current file
position. Refer to the section entitled “Reading and Writing Data to a File” on page
118 for a discussion of when to use this function and when to use the related functions
FileRead, ReadInteger, ReadString, ReadStructure, ReadSignedInteger,
ReadLongInteger, ReadLongSignedInteger, ReadIntegerArray,
ReadSignedIntegerArray, ReadLongIntegerArray, ReadLongSignedIntegerArray,
ReadStringArray

To avoid an error being generated to the console, use FileEOF() to test for the end of
the file prior to reading.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

BUFFER is the destination variable for bytes that are read.

COUNT specifies the number of bytes to read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code.
Refer to “File Function Error Codes” on page 117.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 141

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;

STRING sBuf [100];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

WHILE (FileRead(nFileHandle, sBuf, 4096) > 0)

PRINT (“Read from file: %s\n”, sBuf);

IF (FileClose (nFileHandle) <> 0)

PRINT (“Error closing file\n”);

}

EndFileOperations();

Version:
SIMPL+ Version 3.01 or higher (Pro 2 only)

Control System:
2-Series Only
142 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileSeek
Name:
FileSeek

Syntax:
SIGNED_INTEGER FileSeek (INTEGER handle, LONG_INTEGER
offset, INTEGER origin)

Description:
Positions the current file pointer.

Parameters:
HANDLE specifies the file handle of previously opened file (from FileOpen).
OFFSET specifies the number of bytes to move relative to the origin.
ORIGIN is on of the file seek flags in the following table.

FileSeek Flags:

Return Value:
Number of bytes offset from the beginning of file. Otherwise, file error code is
returned.

Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;
StartFileOperations();

nFileHandle = FileOpen(“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

IF (FileSeek(nFileHandle, 0, SEEK_SET)) < 0)

PRINT (“Error seeking file\n”);

IF (FileClose (nFileHandle) <> 0)

PRINT (“Error closing file\n”);
EndFileOperations();

}

KEYWORD FUNCTION
SEEK_SET Start seeking from beginning of file
SEEK_CUR Start seeking from current position in file
SEEK_END Start seeking from end of file
Language Reference Guide - DOC. 5797G SIMPL+® 143

Software Crestron SIMPL+ ®
Other Examples:
1. Go to beginning of file: FileSeek (nFileHandle, O, SEEK_SET)

2. Go to end of file: FileSeek (nFileHandle, O, SEEK_END)

3. Get current file position: CurrentBytePosition= FileSeek (nFileHandle,O,
SEEK_CUR)

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
144 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FileTime

Name:
FileTime

Syntax:
STRING FileTime(FILEINFO Info);

Description:
Returns a string containing the current system time.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
The return string contains the time in HH:MM:SS format, in 24-hour time. If a value
is not two digits wide, it is padded with leading zeros.

Example:
(Refer to "File Functions Overview"on page 116)

STRING TheTime$[100];

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

TheTime$=TIME();

PRINT (“File time = %s\n”, TheTime$);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

An example output from this would be “File time = 14:25:32”.

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 145

Software Crestron SIMPL+ ®
FileWrite

Name:
FileWrite

Syntax:
SIGNED_INTEGER FileWrite (INTEGER handle, STRING buffer,

INTEGER count)

Description:
Writes data from a file as a series of bytes into a buffer, starting at the current file
position. Refer to the section entitled “Reading and Writing Data to a File” on page
118 for a discussion of when to use this function and when to use the related functions
FileWrite, WriteInteger, WriteString, WriteStructure, WriteSignedInteger,
WriteLongInteger, WriteLongSignedInteger, WriteIntegerArray,
WriteSignedIntegerArray, WriteLongIntegerArray, WriteLongSignedIntegerArray,
WriteStringArray.

Parameters:
HANDLE specifies the file handle of the previously opened file (from FileOpen).

BUFFER is the variable containing the bytes to be written.

COUNT specifies the number of bytes to write.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
146 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle;

STRING sBuf [4096];

StartFileOperations();

sBuf = “Hello World!”;

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

if(FileWrite(nFileHandle, sBuf, 4096) > 0)

PRINT (“Written to file: %s\n”, sBuf);

IF (FileClose (nFileHandle) <> 0)

PRINT (“Error closing file\n”);

}

EndFileOperations();

Version:
SIMPL+ Version 3.01 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 147

Software Crestron SIMPL+ ®
FindClose

Name:
FindClose

Syntax:
SIGNED_INTEGER FindClose()

Description:
Signifies to the operating system that the find operation has ended.

Parameters:
None.

Return Value:
Returns 0 if successful and –1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

PRINT (“%s\n”, FileInfo.Name);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
148 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FindFirst

Name:
FindFirst

Syntax:
SIGNED_INTEGER FindFirst(STRING filespec, FILE_INFO
info)

Description:
This command searches a directory for file(s) matching the given file specification.
Always followed with a FindClose, refer to page 148.
Requires StartFileOperations(), refer to page 183.

Parameters:
FILESPEC specifies the filename to look for. It can be a full path name or a relative
path name with wildcards (the ‘*’ character), refer to page 14.

INFO – FILE_INFO structure containing the information about a found
file:

File Attribute Bit Flags: - May be checked with bitwise and character.

Return Value:
Returns 0 if a file is found matching the specification and –1 if an error occurred.

KEYWORD ATTRIBUTE
ARDONLY File is marked read only
AHIDDEN File is hidden
ASYSTEM File is marked as a system file
AVOLUME File is a volume label
ADIRENT File is a directory
ARCHIVE File is marked as archived
Language Reference Guide - DOC. 5797G SIMPL+® 149

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

if ((FileInfo.File Attributes&ADIRENT) <>0)

PRINT (“%s is a directory\n”, FileInfo.Name

Else

PRINT (“%s is a file\n”,FileInfo.Name

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

NOTE: FindFirst must be followed by a FindClose.
150 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
FindNext

Name:
FindNext

Syntax:
SIGNED_INTEGER FindNext(FILE_INFO info)

Description:
This command continues the current directory for file(s) matching the file
specification in the "FindFirst" command.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
Returns 0 if a file is found matching the specification and –1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

PRINT (“%s\n”, FileInfo.Name);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

NOTE: FindNext must be followed by a FindClose.
Language Reference Guide - DOC. 5797G SIMPL+® 151

Software Crestron SIMPL+ ®
GetCurrentDirectory

Name:
GetCurrentDirectory

Syntax:
STRING GetCurrentDirectory()

Description:
Returns the complete path name of the current working directory. Refer to “Relative
Path Names” on page 14 for a discussion of setting the current directory.

Parameters:
None.

Return Value:
String containing the current directory. If an error occurs, string length equals 0.

Example:
(Refer to "File Functions Overview"on page 116)

PRINT(“The current directory = %s\n”,
GetCurrentDirectory());

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
152 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
IsDirectory

Name:
IsDirectory

Syntax:
INTEGER IsDirectory(FILE_INFO info)

Description:
This routine returns whether the specified file is a directory, equivalent to checking
info;Attributes.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for a description).

Return Value:
Returns 1 if file is a directory and 0 otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

if (IsDirectory(FileInfo))

PRINT(“%s is a directory\n”, FileInfo.Name);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.0x (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 153

Software Crestron SIMPL+ ®
IsHidden

Name:
IsHidden

Syntax:
INTEGER IsHidden(FILE_INFO info)

Description:
This routine returns whether the specified file is hidden. Equivelent to checking
attributes in FILE_INFO. Refer to page 135.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
Returns 1 if file is hidden and 0 if otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

if (IsHidden(FileInfo))

PRINT(“%s is hidden\n”, FileInfo.FileName);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
154 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
IsReadOnly

Name:
IsReadOnly

Syntax:
INTEGER IsReadOnly(FILE_INFO info)

Description:
This routine returns whether the specified file is marked as read-only. Equivalent to
checking attributes in FILE_INFO. Refer to page 135.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
Returns 1 if file is read-only and 0 if otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

if (IsReadOnly(FileInfo))

PRINT(“%s is read-only\n”, FileInfo.Name);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 155

Software Crestron SIMPL+ ®
IsSystem

Name:
IsSystem

Syntax:
INTEGER IsSystem(FILE_INFO info)

Description:
This routine returns whether the specified file is a system file. Equivalent to checking
attributes in FILE_INFO. Refer to page 135.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
Returns 1 if file is a system file and 0 if otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

if (IsSystem(FileInfo))

PRINT(“%s is a system file\n”, FileInfo.Name);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
156 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
IsVolume

Name:
IsVolume

Syntax:
INTEGER IsVolume(FILE_INFO info)

Description:
This routine returns whether the specified file is a volume label. Equivalent to
checking attributes in FILE_INFO. Refer to page 135.

Parameters:
INFO – structure containing the information about a found file (refer to "FindFirst"
on page 149 for description).

Return Value:
Returns 1 if file is a volume label and 0 if otherwise.

Example:
(Refer to "File Functions Overview"on page 116)

FILE_INFO FileInfo;

SIGNED_INTEGER Found;

StartFileOperations();

Found = FindFirst(“*.dat”, FileInfo);

WHILE (Found = 0)

{

if (IsVolume(FileInfo))

PRINT(“volume label = %s\n”, FileInfo.Name);

Found = FindNext(FileInfo);

}

IF (FindClose() < 0)

PRINT (“Error in closing find operation\n”);

EndFileOperations();

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 157

Software Crestron SIMPL+ ®
MakeDirectory

Name:
MakeDirectory

Syntax:
SIGNED_INTEGER MakeDirectory(STRING DirName)

Description:
Creates a directory with the specified name. The path name can be relative or
absolute, refer to page 14. Requires StartFileOperations(), refer to page 183.

Parameters:
DIRNAME – string containing the name of the desired directory.

Return Value:
Returns 0 if successful and –1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF(MakeDirectory(“NewDirect”) < 0)

PRINT(“Error occurred creating directory\n”);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
158 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadInteger

Name:
ReadInteger

Syntax:
SIGNED_INTEGER ReadInteger (INTEGER file_handle,
INTEGER i)

Description:
Reads an integer from a file starting at the current file position. Two bytes are read,
most significant byte first. Refer to the section entitled “Reading and Writing Data to
a File” on page 118 for a discussion of when to use this function and when to use the
related functions: FileRead, ReadInteger, ReadString, ReadStructure,
ReadSignedInteger, ReadLongInteger, ReadLongSignedInteger, ReadIntegerArray,
ReadSignedIntegerArray, ReadLongIntegerArray, ReadLongSignedIntegerArray,
ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

I is the integer whose value is read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 159

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

INTEGER i;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadInteger(nFileHandle, i);

if (iErrorCode > 0)

PRINT (“Read integer from file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
160 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadIntegerArray

Name:
ReadIntegerArray

Syntax:
SIGNED_INTEGER ReadIntegerArray(INTEGER file_handle,

INTEGER iArray[m][n])

Description:
Reads the array from a file starting at the current file position. Two bytes are read,
most significant first containing the row dimension of the array, then two more bytes
are read, containing the column dimension of the array. Then each integer is read as
a two byte quantity, most significant byte first. The integers are stored in row-major
order, e.g. all the elements of row 0 first, then the elements of row 1, etc. Note that
there is one more row and one more column than the dimensions that are read,
because there is a row 0 and a column 0. Refer to the section entitled “Reading and
Writing Data to a File” on page 118 for a discussion of when to use this function and
when to use the related functions: FileRead, ReadInteger, ReadString, ReadStructure,
ReadSignedInteger, ReadLongInteger, ReadLongSignedInteger, ReadIntegerArray,
ReadSignedIntegerArray, ReadLongIntegerArray, ReadLongSignedIntegerArray,
ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

IARRAY is the array whose values are read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code. An
error occurs if the array is not large enough to hold the data.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 161

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

INTEGER iArray[10];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadIntegerArray(nFileHandle, iArray);

if (iErrorCode > 0)

 PRINT (“Read array from file correctly.\n”);

else

 PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
162 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadLongInteger

Name:
ReadLongInteger

Syntax:
SIGNED_INTEGER ReadLongInteger (INTEGER file_handle,

LONG_INTEGER li)

Description:
Reads a long integer from a file starting at the current file position. Four bytes are
read, most significant byte first and least significant byte last. Refer to the section
entitled “Reading and Writing Data to a File” on page 118 for a discussion of when
to use this function and when to use the related functions: FileRead, ReadInteger,
ReadString, ReadStructure, ReadSignedInteger, ReadLongInteger,
ReadLongSignedInteger, ReadIntegerArray, ReadSignedIntegerArray,
ReadLongIntegerArray, ReadLongSignedIntegerArray, ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

LI is the long integer whose value is read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 163

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

LONG_INTEGER li;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadLongInteger(nFileHandle, li);

if (iErrorCode > 0)

PRINT (“Read long integer from file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
164 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadLongIntegerArray

Name:
ReadLongIntegerArray

Syntax:
SIGNED_INTEGER ReadLongIntegerArray (INTEGER
file_handle,

LONG_INTEGER ilArray[m][n])

Description:
Reads the array from a file starting at the current file position. Two bytes are read,
most significant first containing the row dimension of the array, then two more bytes
are read, containing the column dimension of the array. Then each long integer is read
as a four byte quantity, most significant byte first. The integers are stored in row-
major order, e.g. all the elements of row 0 first, then the elements of row 1, etc. Note
that there is one more row and one more column than the dimensions that are read,
because there is a row 0 and a column 0. Refer to the section entitled “Reading and
Writing Data to a File” on page 118 for a discussion of when to use this function and
when to use the related functions: FileRead, ReadInteger, ReadString, ReadStructure,
ReadSignedInteger, ReadLongInteger, ReadLongSignedInteger, ReadIntegerArray,
ReadSignedIntegerArray, ReadLongIntegerArray, ReadLongSignedIntegerArray,
ReadStringArray.

An error occurs if the array is not long enough to hold the data.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

ilArray is the array whose values are read.

 Return Value:
Number of bytes read from file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 165

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

LONG_INTEGER ilArray[10];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadLongIntegerArray(nFileHandle, ilArray);

if (iErrorCode > 0)

PRINT (“Read array from file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
166 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadSignedInteger

Name:
ReadSignedInteger

Syntax:
SIGNED_INTEGER ReadSignedInteger (INTEGER file_handle,

SIGNED_INTEGER si)

Description:
Reads a signed integer from a file starting at the current file position. Two bytes are
read, most significant first. Refer to the section entitled “Reading and Writing Data
to a File” on page 118 for a discussion of when to use this function and when to use
the related functions: FileRead, ReadInteger, ReadString, ReadStructure,
ReadSignedInteger, ReadLongInteger, ReadLongSignedInteger, ReadIntegerArray,
ReadSignedIntegerArray, ReadLongIntegerArray, ReadLongSignedIntegerArray,
ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

SI is the signed integer whose value is read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 167

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_INTEGER si;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadSignedInteger(nFileHandle, si);

if (iErrorCode > 0)

 PRINT (“Read signed integer from file correctly\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
168 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadSignedIntegerArray

Name:
ReadSignedIntegerArray

Syntax:
SIGNED_INTEGER ReadSignedIntegerArray (INTEGER
file_handle,

SIGNED_INTEGER isArray[m][n])

Description:
Reads the array from a file starting at the current file position. Two bytes are read,
most significant first containing the row dimension of the array, then two more bytes
are read, containing the column dimension of the array. Then each signed integer is
read as a two byte quantity, most significant byte first. The integers are stored in row-
major order, e.g. all the elements of row 0 first, then the elements of row 1, etc. Note
that there is one more row and one more column than the dimensions that are read,
because there is a row 0 and a column 0. Refer to the section entitled “Reading and
Writing Data to a File” on page 118 for a discussion of when to use this function and
when to use the related functions: FileRead, ReadInteger, ReadString, ReadStructure,
ReadSignedInteger, ReadLongInteger, ReadLongSignedInteger, ReadIntegerArray,
ReadSignedIntegerArray, ReadLongIntegerArray, ReadLongSignedIntegerArray,
ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

ISARRAY is the array whose values are read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code. An
error occurs if the array is not large enough to hold the data.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 169

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_INTEGER isArray[10][5];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadSignedIntegerArray(nFileHandle, isArray);

if (iErrorCode > 0)

PRINT (“Read array from file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
170 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadSignedLongInteger

Name:
ReadSignedLongInteger

Syntax:
SIGNED_INTEGER ReadSignedLongInteger (INTEGER
file_handle,

SIGNED_LONG_INTEGER sli)

Description:
Reads data from a file starting at the current file position. Each element of the
structure is read, without any padding bytes, that might actually be there in memory.
Refer to the section entitled “Reading and Writing Data to a File” on page 118 for a
discussion of when to use this function and when to use the related functions:
FileRead, ReadInteger, ReadString, ReadStructure, ReadSignedInteger,
ReadLongInteger, ReadLongSignedInteger, ReadIntegerArray,
ReadSignedIntegerArray, ReadLongIntegerArray, ReadLongSignedIntegerArray,
ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

SLI is the signed long integer whose value is read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 171

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_LONG_INTEGER sli;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadSignedLongInteger(nFileHandle, sli);

if (iErrorCode > 0)

PRINT (“Read from file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
172 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadSignedLongIntegerArray

Name:
ReadSignedLongIntegerArray

Syntax:
SIGNED_INTEGER ReadSignedLongIntegerArray (INTEGER
file_handle,

SIGNED_LONG_INTEGER sliArray[m][n])

Description:
Reads the array from a file starting at the current file position. Two bytes are read,
most significant first containing the row dimension of the array, then two more bytes
are read, containing the column dimension of the array. Then each signed long integer
is read as a four byte quantity, most significant byte first. The integers are stored in
row-major order, e.g. all the elements of row 0 first, then the elements of row 1, etc.
Note that there is one more row and one more column than the dimensions that are
read, because there is a row 0 and a column 0. Refer to the section entitled “Reading
and Writing Data to a File” on page 118 for a discussion of when to use this function
and when to use the related functions: FileRead, ReadInteger, ReadString,
ReadStructure, ReadSignedInteger, ReadLongInteger, ReadLongSignedInteger,
ReadIntegerArray, ReadSignedIntegerArray, ReadLongIntegerArray,
ReadLongSignedIntegerArray, ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

SLIARRAY is the array whose values are read.

Return Value:
Number of bytes read from file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file read
functions.
Language Reference Guide - DOC. 5797G SIMPL+® 173

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_LONG_INTEGER sliArray[10][5];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadSignedLongIntegerArray(nFileHandle,
sliArray);

if (iErrorCode > 0)

PRINT (“Read array from file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
174 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadString

Name:
ReadString

Syntax:
SIGNED_INTEGER ReadString (INTEGER file_handle, STRING
s)

Description:
Reads a string from a file starting at the current file position. Internally, the string is
stored as a 2-byte length, most significant byte first, then the actual string bytes. In
the case of a string variable, the total number of bytes written is calculated from the
size of the string, not the string allocation size. Refer to the section entitled “Reading
and Writing Data to a File” on page 118 for a discussion of when to use this function
and when to use the related functions: FileRead, ReadInteger, ReadString,
ReadStructure, ReadSignedInteger, ReadLongInteger, ReadLongSignedInteger,
ReadIntegerArray, ReadSignedIntegerArray, ReadLongIntegerArray,
ReadLongSignedIntegerArray, ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

S is the string whose value is read.

Return Value:
Number of bytes read from file into the string. If the return value is negative, it is an
error code. An error occurs if the string is not large enough to hold the data.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 175

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

STRING s[100];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadString(nFileHandle, s);

if (iErrorCode > 0)

PRINT (“Read string from file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
176 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadStringArray

Name:
ReadStringArray

Syntax:
SIGNED_INTEGER ReadStringArray (INTEGER file_handle,
STRING s[])

Description:
Reads a string from a file starting at the current file position. Internally, the string is
stored with the first 2 bytes indicating the total number of string written, then each
string follows as a 2-byte length, most significant byte first, then the actual string
bytes. In the case of a string variable, the total number of bytes is the calculated from
the size of the string, not the string allocation size. Refer to the section entitled
“Reading and Writing Data to a File” on page 118 for a discussion of when to use this
function and when to use the related functions: FileRead, ReadInteger, ReadString,
ReadStructure, ReadSignedInteger, ReadLongInteger, ReadLongSignedInteger,
ReadIntegerArray, ReadSignedIntegerArray, ReadLongIntegerArray,
ReadLongSignedIntegerArray, ReadStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

S is the string whose value is read.

Return Value:
Number of bytes read from file into the string. If the return value is negative, it is an
error code. An error occurs if the array is not large enough to hold the data.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 177

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

STRING s[100][100];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = ReadStringArray(nFileHandle, s);

if (iErrorCode > 0)

PRINT (“Read string from file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
178 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ReadStructure

Name:
ReadStructure

Syntax:
ReadStructure (INTEGER nFileHandle, STRUCTURE struct [,
INTEGER nTotalBytesRead])

Description:
Reads data from a file starting at the current file position. Each element of the
structure is read, without any padding bytes, that might actually be there in memory.
Refer to the section entitled “Reading and Writing Data to a File” on page 118 for a
discussion of when to use this function and when to use the related functions:
FileRead, ReadInteger, ReadString, ReadStructure, ReadSignedInteger,
ReadLongInteger, ReadLongSignedInteger, ReadIntegerArray,
ReadSignedIntegerArray, ReadLongIntegerArray, ReadLongSignedIntegerArray,
ReadStringArray.

There is no error if the structure does not match the data.

Parameters:
nFileHandle - File handle of the previously opened file (from FileOpen).

struct - Structure variable that will receive data read from file

nTotalBytesRead - optional argument. INTEGER variable that will contain the total
number of bytes read from the file into the structure.

Return Value:
None.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 179

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, nTotalBytesRead;

STRUCTURE PhoneBookEntry

{

STRING Name[50];

STRING Address[100];

STRING PhoneNumber[20];

};

PhoneBookEntry OneEntry;

StartFileOperations();

nFileHandle = FileOpen (“MyFile.txt”, _O_RDONLY);

if (nFileHandle >= 0)

{

ReadStructure(nFileHandle, PhoneBookEntry,
nTotalBytesRead);

if(nTotalBytesRead < 0)

PRINT (“Error reading structure. Error code = %d\n”,
nTotalBytesRead);

else

PRINT (“Read structure from file correctly. Total
bytes read = %d\n”, nTotalBytesRead);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
180 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
RemoveDirectory

Name:
RemoveDirectory

Syntax:
SIGNED_INTEGER RemoveDirectory(STRING DirName)

Description:
Removes the directory with the specified name. The path name can be a relative link
or absolute, refer to page page 14. Must be empty. Requires StartFileOperations(),
refer to page page 183.

Parameters:
DIRNAME – string containing the name of the desired directory.

Return Value:
Returns 0 if successful and –1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF(RemoveDirectory(“NewDirect”) < 0)

PRINT(“Error occurred deleting directory\n”);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 181

Software Crestron SIMPL+ ®
SetCurrentDirectory

Name:
SetCurrentDirectory

Syntax:
SIGNED_INTEGER SetCurrentDirectory(STRING DirName)

Description:
Changes the working directory to the specified name. Refer to “Relative Path Names”
on page 14.

Parameters:
DIRNAME – string containing the name of the desired directory.

Return Value:
Returns 0 if successful and –1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF(SetCurrentDirectory(“NewDirect”) < 0)

PRINT(“Error occurred creating directory\n”);

PRINT(“Directory is now: %s\n”, GetCurrentDirectory());

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
182 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
StartFileOperations

Name:
StartFileOperations

Syntax:
SIGNED_INTEGER StartFileOperations()

Description:
Signifies to the operating system that the current thread is starting its file operations.

Parameters:
None.

Return Value:
Returns 0 if successful and –1 if an error occurred.

Example:
(Refer to "File Functions Overview"on page 116)

IF (StartFileOperations() < 0)

PRINT (“Error in starting file ops\n”);

// various file operations

IF (EndFileOperations() < 0)

PRINT (“Error Occurred in ending file ops\n”);

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only

NOTE: StartFileOperations is required prior to any operation accessing a file.
EndFileOperations is required after finishing all file operations and prior to
terminating the thread of execution (e.g., one of the PUSH commands).
Language Reference Guide - DOC. 5797G SIMPL+® 183

Software Crestron SIMPL+ ®
WaitForNewDisk

Name:
WaitForNewDisk

Syntax:
SIGNED_INTEGER WaitForNewDisk()

Description:
Waits for a compact flash card to be inserted into the control system. Refer to
“CheckForDisk” on page 119.

Parameters:
None.

Return Value:
Returns 0 when a new compact flash card is installed into the control system, <0 if an
error occurs.

Example:
(Refer to "File Functions Overview"on page 116)

while(1)

{

if (WaitForNewDisk() < 0)

break;

// perform operations on the new disk. Read a file, etc.

}

Version:
SIMPL+ Version 3.00.02 or higher (Pro 2 only)

Control System:
2-Series Only
184 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteInteger

Name:
WriteInteger

Syntax:
SIGNED_INTEGER WriteInteger (INTEGER file_handle,
INTEGER i)

Description:
Writes an integer from a file starting at the current file position. Two bytes are
written, most significant byte first. Refer to the section entitled “Reading and Writing
Data to a File” on page 118 for a discussion of when to use this function and when to
use the related functions: FileWrite, WriteInteger, WriteString, WriteStructure,
WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadInteger to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

I is the integer whose value is written.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 185

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

INTEGER i;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteInteger(nFileHandle, i);

if (iErrorCode > 0)

PRINT (“Written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
186 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteIntegerArray

Name:
WriteIntegerArray

Syntax:
SIGNED_INTEGER WriteIntegerArray(INTEGER file_handle,

INTEGER iArray[m][n])

Description:
Writes the array from a file starting at the current file position. Two bytes are written,
most significant first containing the row dimension of the array, then two more bytes
are written, containing the column dimension of the array. Then each integer is
written as a two byte quantity, most significant byte first. The integers are stored in
row-major order, e.g. all the elements of row 0 first, then the elements of row 1, etc.
Note that there is one more row and one more column than the dimensions that are
written, because there is a row 0 and a column 0. Refer to the section entitled
“Reading and Writing Data to a File” on page 118 for a discussion of when to use this
function and when to use the related functions: FileWrite, WriteInteger, WriteString,
WriteStructure, WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadLongIntegerArray to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

IARRAY is the array whose values are written.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 187

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

INTEGER iArray[10];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteIntegerArray(nFileHandle, iArray);

if (iErrorCode > 0)

PRINT (“Array written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
188 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteLongInteger

Name:
WriteLongInteger

Syntax:
SIGNED_INTEGER WriteLongInteger (INTEGER file_handle,

LONG_INTEGER li)

Description:
Writes a long integer from a file starting at the current file position. Four bytes are
written, most significant byte first. Refer to the section entitled “Reading and Writing
Data to a File” on page 118 for a discussion of when to use this function and when to
use the related functions: FileWrite, WriteInteger, WriteString, WriteStructure,
WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadLongInteger to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

LI is the long integer whose value is written.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 189

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

LONG_INTEGER li;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteLongInteger(nFileHandle, li);

if (iErrorCode > 0)

PRINT (“Written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
190 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteSignedInteger

Name:
WriteSignedInteger

Syntax:
SIGNED_INTEGER WriteSignedInteger (INTEGER
file_handle,

SIGNED_INTEGER si)

Description:
Writes a signed integer from a file starting at the current file position. Two bytes are
written, most significant first. Refer to the section entitled “Reading and Writing Data
to a File” on page 118 for a discussion of when to use this function and when to use
the related functions: FileWrite, WriteInteger, WriteString, WriteStructure,
WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadSignedInteger to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

SI is the signed integer whose value is written.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 191

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_INTEGER si;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteSignedInteger(nFileHandle, si);

if (iErrorCode > 0)

PRINT (“Written to file correctly\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
192 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteSignedIntegerArray

Name:
WriteSignedIntegerArray

Syntax:
SIGNED_INTEGER WriteSignedIntegerArray (INTEGER
file_handle,

SIGNED_INTEGER isArray[m][n])

Description:
Writes the array from a file starting at the current file position. Two bytes are written,
most significant first containing the row dimension of the array, then two more bytes
are Write, containing the column dimension of the array. Then each signed integer is
written as a two byte quantity, most significant byte first. The integers are stored in
row-major order, e.g. all the elements of row 0 first, then the elements of row 1, etc.
Note that there is one more row and one more column than the dimensions that are
written, because there is a row 0 and a column 0. Refer to the section entitled
“Reading and Writing Data to a File” on page 118 for a discussion of when to use this
function and when to use the related functions: FileWrite, WriteInteger, WriteString,
WriteStructure, WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadSignedIntegerArray to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

ISARRAY is the array whose values are Write.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 193

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_INTEGER isArray[10][5];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteSignedIntegerArray(nFileHandle, isArray);

if (iErrorCode > 0)

PRINT (“Array written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
194 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteSignedLongInteger

Name:
WriteSignedLongInteger

Syntax:
SIGNED_INTEGER WriteSignedLongInteger (INTEGER
file_handle,

SIGNED_LONG_INTEGER sli)

Description:
Writes data from a file starting at the current file position. Each element of the
structure is written, without any padding bytes, that might actually be there in
memory. Refer to the section entitled “Reading and Writing Data to a File” on page
118 for a discussion of when to use this function and when to use the related
functions: FileWrite, WriteInteger, WriteString, WriteStructure,
WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadSignedLongInteger to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

SLI is the signed long integer whose value is written.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

Example:
(Refer to "File Functions Overview"on page 116)

INTEGER nFileHandle, iErrorCode;

SIGNED_LONG_INTEGER sli;

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteSignedLongInteger(nFileHandle, sli);

if (iErrorCode > 0)

PRINT (“Written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();
Language Reference Guide - DOC. 5797G SIMPL+® 195

Software Crestron SIMPL+ ®
Version:
SIMPL+ Version 3.01 or higher (Pro 2 only)

Control System:
2-Series Only
196 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteSignedLongIntegerArray

Name:
WriteSignedLongIntegerArray

Syntax:
SIGNED_INTEGER WriteSignedLongIntegerArray (INTEGER
file_handle,

SIGNED_LONG_INTEGER sliArray[m][n])

Description:
Writes the array from a file starting at the current file position. Two bytes are written,
most significant first containing the row dimension of the array, then two more bytes
are written, containing the column dimension of the array. Then each signed long
integer is written as a four byte quantity, most significant byte first. The integers are
stored in row-major order, e.g. all the elements of row 0 first, then the elements of
row 1, etc. Note that there is one more row and one more column than the dimensions
that are written, because there is a row 0 and a column 0. Refer to the section entitled
“Reading and Writing Data to a File” on page 118 for a discussion of when to use this
function and when to use the related functions: FileWrite, WriteInteger, WriteString,
WriteStructure, WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadSignedLongIntegerArray to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

SLIARRAY is the array whose values are written.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 197

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

SIGNED_LONG_INTEGER sliArray[10][5];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteSignedLongIntegerArray(nFileHandle,
sliArray);

if (iErrorCode > 0)

PRINT (“Array written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
198 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteString

Name:
WriteString

Syntax:
SIGNED_INTEGER WriteString (INTEGER file_handle, STRING
s)

Description:
Writes a string to a file starting at the current file position. Internally, the string is
stored as a 2-byte length, most significant byte first, then the actual string bytes. In
the case of a string variable, the total number of bytes written is the calculated from
the size of the string, not the string allocation size. Refer to the section entitled
“Reading and Writing Data to a File” on page 118 for a discussion of when to use this
function and when to use the related functions: FileWrite, WriteInteger, WriteString,
WriteStructure, WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadString to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

S is the string whose value is written.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 199

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

STRING s[100];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteString(nFileHandle, s);

if (iErrorCode > 0)

PRINT (“String written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
200 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteStringArray

Name:
WriteStringArray

Syntax:
SIGNED_INTEGER WriteStringArray (INTEGER file_handle,
STRING s[])

Description:
Writes a string array to a file starting at the current file position. Internally, the string
is stored with the first 2 bytes indicating the total number of strings written, then each
string follows as a 2-byte length, most significant byte first, then the actual string
bytes. In the case of a string variable, the total number of bytes is calculated from the
size of the string, not the string allocation size. Refer to the section entitled “Reading
and Writing Data to a File” on page 118 for a discussion of when to use this function
and when to use the related functions: FileWrite, WriteInteger, WriteString,
WriteStructure, WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Use ReadStringArray to read this.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

S is the string whose value is written.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 201

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, iErrorCode;

STRING s[100][100];

StartFileOperations();

nFileHandle = FileOpen (“MyFile”, _O_WRONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteStringArray(nFileHandle, s);

if (iErrorCode > 0)

PRINT (“String written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
202 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
WriteStructure

Name:
WriteStructure

Syntax:
WriteStructure (INTEGER nFileHandle, STRUCTURE struct
[, INTEGER nTotalBytesWritten])

Description:
Writes data to a file starting at the current file position. Each element of the structure
is written, without any padding bytes, that might actually be there in memory. Refer
to the section entitled “Reading and Writing Data to a File” on page 118 for a
discussion of when to use this function and when to use the related functions:
FileWrite, WriteInteger, WriteString, WriteStructure, WriteSignedInteger,
WriteLongInteger, WriteLongSignedInteger, WriteIntegerArray,
WriteSignedIntegerArray, WriteLongIntegerArray, WriteLongSignedIntegerArray,
WriteStringArray.

Use ReadStructure to read this.

Parameters:
nFileHandle - File handle of the previously opened file (from FileOpen).

struct - Structure variable whose data will be written to the file.

nTotalBytesWritten - optional argument. INTEGER variable that will contain the
total number of bytes written to the file from the structure.

Return Value:
None.

NOTE: Input and Output variables of any kind are not allowed in the file reading and
writing functions, just internal variables.
Language Reference Guide - DOC. 5797G SIMPL+® 203

Software Crestron SIMPL+ ®
Example:
(Refer to "File Functions Overview"on page 116)

SIGNED_INTEGER nFileHandle, nTotalBytesWritten;

STRUCTURE PhoneBookEntry

{

STRING Name[50];

STRING Address[100];

STRING PhoneNumber[20];

};

PhoneBookEntry OneEntry;

StartFileOperations();

nFileHandle = FileOpen (“MyFile.txt”, _O_WRONLY);

if (nFileHandle >= 0)

{

WriteStructure(nFileHandle, PhoneBookEntry,
nTotalBytesWritten);

if(nTotalBytesWritten < 0)

PRINT (“Error writing structure. Error code = %d\n”,
nTotalBytesWritten);

else

PRINT (“Structure written to file correctly. Total
bytes written = %d\n”, nTotalBytesWritten);

}

EndFileOperations();

Version:
SIMPL+ Version 3.00.07 or higher (Pro 2 only)

Control System:
2-Series Only
204 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Mathematical Functions

Mathematical Functions Overview

These functions perform general mathematical operations in a given SIMPL+
program by operating on one or more numerical arguments and returning an
INTEGER as a result.

Abs

Name:
Abs

Syntax:
INTEGER Abs(INTEGER SOURCE);

INTEGER Abs(SIGNED_INTEGER or SOURCE);

Description:
Takes the absolute value of SOURCE. If SOURCE is negative, a positive value is
returned. If SOURCE is already positive, the same value is returned.

Parameters:
Takes the absolute value of an INTEGER.

Return Value:
An INTEGER corresponding to the absolute value of SOURCE.

Example:
DIGITAL_INPUT TRIG;

INTEGER I, K;

I=-5;

CHANGE TRIG

{

K=ABS(I);

PRINT(“Original Value = %d, Absolute Value = %d\n”, I, K);

}

The output would be:

Original Value = -5, Absolute Value = 5

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 205

Software Crestron SIMPL+ ®
Max

Name:
Max

Syntax:
INTEGER Max(INTEGER VAL1, INTEGER VAL2)

Description:
Determine the maximum of two values based on an unsigned comparison.

Parameters:
VAL1 and VAL2 are both INTEGER values on which the test is performed.

Return Value:
The maximum of Val1, Val2 after an unsigned comparison is performed. Refer to
“Signed vs. Unsigned Arithmetic” on page 21 for a further explanation of how the
values are compared.

Example:
INTEGER X, Y;

FUNCTION MAIN()

{

X = MAX(65535, 0);

Y = MAX(25, 26);

}

X would be 65535, and Y would be 26.

Version:
SIMPL+ Version 1.00
206 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
MIN

Name:
Min

Syntax:
INTEGER Min(INTEGER VAL1, INTEGER VAL2)

Description:
Determine the minimum of two values based on an unsigned comparison.

Parameters:
VAL1 and VAL2 are both INTEGER values on which the test is performed.

Return Value:
The minimum of Val1, Val2 after an unsigned comparison is performed. Refer to
“Signed vs. Unsigned Arithmetic” for a further explanation of how the values are
compared.

Example:
INTEGER X, Y;

FUNCTION MAIN()

{

X = MIN(65535, 0);

Y = MIN(25, 26);

}

X would be 0, and Y would be 25.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 207

Software Crestron SIMPL+ ®
MulDiv

Name:
MulDiv

Syntax:
INTEGER MulDiv(INTEGER VAL1, INTEGER VAL2, INTEGER VAL3)

Description:
Computes the result (VAL1 * VAL2)/VAL3.

Parameters:
VAL1, VAL2, and VAL3 are INTEGER values.

Return Value:
A 16-bit integer is returned based on the above equation. The arithmetic operations
are performed using unsigned arithmetic. Note that 32-bit math is used internally, so
that if VAL1*VAL2 is greater than a 16-bit number, accuracy is maintained. If the
final result is greater than 16-bits, the lower 16-bits are returned.

Example:
INTEGER X, Y;

FUNCTION MAIN()

{

X = 1970;

Y = 40;

PRINT(“The result of (%d * %d)/25 = %d\n”, X, Y,

MULDIV(X, Y, 25);

}

The PRINT statement would show the result as being 3152. In this case, X*Y is
greater than a 16-bit number, but accuracy is maintained due to the use of 32-bit
arithmetic internally.

Version:
SIMPL+ Version 1.00
208 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
SMAX

Name:
SMax

Syntax:
INTEGER SMax(INTEGER VAL1, INTEGER VAL2)

Description:
Determine the maximum of two values based on a signed comparison.

Parameters:
VAL1 and VAL2 are both INTEGER values on which the test is performed.

Return Value:
The maximum of Val1, Val2 after a signed comparison is performed. Refer to
“Signed vs. Unsigned Arithmetic” for a further explanation of how the values are
compared.

Example:
INTEGER X, Y;

FUNCTION MAIN()

{

X = SMAX(65535, 0);

Y = SMAX(25, 26);

}

X would be 0 (65535 interpreted as -1), and Y would be 26.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 209

Software Crestron SIMPL+ ®
SMin

Name:
SMin

Syntax:
INTEGER SMin(INTEGER VAL1, INTEGER VAL2)

Description:
Determine the minimum of two values based on a signed comparison.

Parameters:
VAL1 and VAL2 are both INTEGER values on which the test is performed.

Return Value:
The minimum of Val1, Val2 after a signed comparison is performed. Refer to
“Signed vs. Unsigned Arithmetic” on page 21 for a further explanation of how the
values are compared.

Example:
INTEGER X, Y;

FUNCTION MAIN()

{

X = SMIN(65535, 0);

Y = SMIN(25, 26);

}

X would be 65535 (interpreted as -1), and Y would be 25.

Version:
SIMPL+ Version 1.00
210 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Random Number Functions

Random Number Functions Overview

These functions allow a SIMPL+ program to generate a random number.

Random

Name:
Random

Syntax:
INTEGER Random(INTEGER LowerBound, INTEGER UpperBound);

Description:
Generate a random number. Refer to “Seed” on page 213 and “Rnd” on page 212.

Parameters:
LowerBound is an INTEGER specifying the lower end of the range.

UpperBound is an INTEGER specifying the upper end of the range.

Both LowerBound and UpperBound are treated as unsigned values.

Return Value:
Returns an unsigned number from LowerBound to UpperBound. Both LowerBound
and UpperBound are legal values.

Example:
INTEGER NUM;

FUNCTION MAIN()

{

NUM = RANDOM(25, 80);

PRINT(“The random number between 25 and 80 is: %d\n”, NUM);

}

An example output from this would be:
The random number between 25 and 80 is: 42

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 211

Software Crestron SIMPL+ ®
Rnd

Name:
Rnd

Syntax:
INTEGER Rnd();

Description:
Generate a random number. Refer to “Seed” on page 213 and “Random” on
page 211.

Parameters:
None.

Return Value:
An INTEGER from 0 to 65535.

Example:
INTEGER NUM;

FUNCTION MAIN()

{

NUM = RND();

PRINT(“The random number is: %d\n”, NUM);

}

Version:
SIMPL+ Version 1.00
212 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Seed

Name:
Seed

Syntax:
Seed(INTEGER SeedValue);

Description:
Provides a seed or origin for the random number generator so that the numbers
returned by RND and RANDOM are pseudo-random numbers. SEED is not required
for generating random numbers as the random number generator will be seed with a
default value.

 This default value is issued at control system restart, not program restart. That is, if
you don't used the SEED call, you will not get the same value if you restart the
program. For any particular value of SEED, the random number generator will
generate a predictable series of numbers. Note that specifying the seed value is global
to all SIMPL+ programs running inside a control system. The sequence begins again
whenever SEED is called.

Parameters:
None.

Return Value:
None.

Example:
INTEGER NUM;

FUNCTION MAIN()

{

SEED(25);

NUM = RANDOM(25, 80);

PRINT(“The random number between 25 and 80 is: %d\n”, NUM);

}

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 213

Software Crestron SIMPL+ ®
String Formatting & Printing Functions

String Formatting & Printing Functions Overview

The printing functions are used to take INTEGER and STRING type arguments in a
SIMPL+ program, format them in a user specified way, and send the output to either
the COMPUTER port of the control system or to another STRING.

MakeString

Name:
MakeString

Syntax:
MakeString(STRING DESTINATION, <Static Specification
String> [, <arg1> ...]);

MakeString(0 | 1 | 2, <Static Specification String> [,

<arg1> ...]);

Description:
MAKESTRING is a variant of PRINT (Refer to page 216). The output of
MAKESTRING goes to the DESTINATION string. It can print simple text strings or
complex formatted strings. The second form of MAKESTRING allows different
destinations to be selected:

0: Console Port, same as PRINT.

1: CPU (same functionality as SendPacketToCPU function)

2: Cresnet Network (same functionality as SendCresnetPacket function).

Parameters:
DESTINATION is a string where the output goes to after it has been formatted and
processed. For a further description of formatting, refer to PRINT that begins on page
216.

Return Value:
None.

NOTE: In the second form, the first argument may not be a variable containing 0, 1,
2. It must be the written as 0, 1, 2. Crestron is discouraging the use of the second form
of MAKESTRING in favor of either the PRINT command or alternate methods for
activating devices that do not require knowledge of Cresnet packets, which are subject
to change.
214 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
INTEGER X;

STRING Z[100], OUT[100];

X=10;

Z=”Hello”;

FUNCTION MAIN()

{

// Puts “This is a string” followed by a CRLF onto OUT.

MAKESTRING(OUT, “This is string\n”);

// Puts “The value of X is 10 in decimal, 0A in hex”

// followed by CRLF onto OUT.

MAKESTRING(OUT, “The value of X is %u in decimal, %02X in

hex\n”, X, X);

// Puts “The String value is Hello” onto OUT.

MAKESTRING(OUT, “The String value is %s”, Z);

}

Version:
SIMPL+ Version 2.00 for Console, Cresnet, and CPU destinations.

SIMPL+ Version 1.00 for everything else.
Language Reference Guide - DOC. 5797G SIMPL+® 215

Software Crestron SIMPL+ ®
Print

Name:
Print

Syntax:
PRINT(<Static Specification String> [, <arg1> ...]);

Description:
The output of PRINT goes to the CONSOLE port of the control system and can be
monitored in the Crestron Viewport. It can print simple text strings or complex
formatted strings.

Parameters:
<Static Specification String> is a quoted string that contains text and formatting
information. Format specifiers are of the form:

%[[Pad]Width]specifier

Valid Format Specifiers

The optional Width specifier is a number that states the width of the field as
characters. If the value to be printed is less than the Width, it is padded on the left
with spaces. Width can be two digits.

The optional Pad specifier works with the Width specifier. If the result of the Width
operation results in the need to add spaces, the Pad specifier can be used to pad with
different values rather than a space. '0' is the only valid pad value, i.e. %03d pads with
leading zeros so 1Z would be printed as 012.

As each % value is found, it pulls the matching <arg> off the list. The first % uses
<arg1>, the second % uses <arg2>, etc. If the number of % specifiers does not match
the number of arguments, the program will generate a compile error, the compiler

s Specifies a BUFFER_INPUT, STRING, or STRING_INPUT variable.
(unprintable characters are printed in the format that Viewport uses)

d Specifies an ANALOG_INPUT, ANALOG_OUTPUT, or INTEGER to be
printed as a signed decimal value.

u Specifies an ANALOG_INPUT, ANALOG_OUTPUT, or INTEGER to be
printed as an unsigned decimal value.

x Specifies an ANALOG_INPUT, ANALOG_OUTPUT, or INTEGER to be
printed as a lowercase hexadecimal number.

X Specifies an ANALOG_INPUT, ANALOG_OUTPUT, or INTEGER to be
printed as an uppercase hexadecimal number.

l Specifies a long_integer or unsigned_long_integer will follow

% Prints a % sign (i.e. use %% to print a % sign).

%lD Specifies a LONG_INTEGER to be printed as a signed decimal value.

%c Specifies a printable ASCII character to be printed.
216 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
also checks to make sure the format specifier matches the type of the variable being
used (i.e. if %d is used, the variable being used should be INTEGER type).

In the <Static Specification String>, certain values may be printed using “escape
sequences”. Escape sequences start with the \ character and have a variable number
of characters following. The following table specifies the legal escape sequences:

Return Value:
None.

Example:
INTEGER X;

STRING Z[100];

X=10;

Z=”Hello”;

FUNCTION MAIN()

{

// Outputs “This is a string” followed by a CRLF.

PRINT(“This is a string\n”);

// Outputs “The value of X is 10 in decimal, 0A in hex”

// followed by CRLF.

PRINT(“The value of X is %u in decimal, %02X in hex\n”,

X, X);

// Outputs “The String value is Hello”

PRINT(“The String value is %s”, Z);
}

Version:
SIMPL+ Version 1.00

NOTE: If no format specifiers are used, then a simple quoted text string is printed.

ESCAPE MEANING HEX CONSTANT
\n Carriage Return + Linefeed \x0D\0A
\t Tab \x09
\b Backspace \x08
\r Carriage Return \x0D
\f Form Feed \x0C
\a Audible Alert (Bell) \x07
\\ Backslash \x5C
\' Single Quote \x27
\” Double Quote \x22

\xZZ Hex Constant. Z can range from 0-9, a-f or A-F \xZZ
Language Reference Guide - DOC. 5797G SIMPL+® 217

Software Crestron SIMPL+ ®
String Concatenation
String concatenation can be performed either using the + operator or by using
MAKESTRING or PRINT functions. It is easier to use the + operator in general
usage, although the formatting options of the MAKESTRING and PRINT functions
give greater flexibility.

The + operator for strings is used the same way as in mathematical expressions.
String concatenation may only be used as a standalone statement. The syntax is:

<Destination_string> = <String1 > [+ <String2> ...];

When string values appear on the right-side of the equal sign, the exact contents are
appended to the new string. <String> values may be of type literal (quoted) strings,
BUFFER_INPUT, STRING, STRING_INPUT, or any function that returns a string.

Examples:
STRING A$[100], B$[100], C$[100];

B$=”Hello”;

C$=”World!”;

I=56;

J=2;

// This will output “Hello562World!”

A$=B$+ITOA(I)+ITOA(J)+”xyz”+C$;

PRINT(“%s”, A$);

// This will output “VHello2World”

A$=CHR(I)+B$+ITOA(J)+C$;

PRINT(“%s”, A$);
218 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
String Parsing & Manipulation Functions

String Parsing and Manipulation Functions Overview

String parsing and manipulation functions are used where the contents of string
variables need to be examined or modified.

ClearBuffer

Name:
ClearBuffer

Syntax:
ClearBuffer(STRING BUFFERNAME);

Description:
Deletes the contents of the specified buffer. If a LEN is done on the buffer after a
CLEARBUFFER, the return value will be 0. This is equilavent to assigning an empty
string to the buffer, e.g., BUFFERNAME=””;

Parameters:
BUFFERNAME specifies the name of the string to empty. BUFFER_INPUT,
STRING, and STRING_INPUT sources are legal.

Return Value:
None.

Example:
BUFFER_INPUT IN$[100];

CHANGE IN$

{

IF(RIGHT$(IN$,1) = “Z”)

CLEARBUFFER(IN$);

// Code to process IN$ goes here.

}

In this example, if the last character that comes into the BUFFER_INPUT is “Z”, the
buffer is cleared.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 219

Software Crestron SIMPL+ ®
Find

Name:
Find

Syntax:
INTEGER Find(STRING MATCH_STRING, STRING SOURCE_STRING

[,INTEGER START_POSITION]);

Description:
Finds the position in SOURCE_STRING where MATCH_STRING first occurs.

Parameters:
MATCH_STRING is a STRING containing the data to be searched.

SOURCE_STRING is a STRING containing the data to be searched.

START_POSITION is an INTEGER which tells FIND at what character in the string
to start the search, and is 1 based. If not specified, it defaults to 1.

Return Value:
The index of where MATCH_STRING first occurs (going left to right) in
SOURCE_STRING. If a match can not be found, or POSITION exceeds the length
of the SOURCE_STRING then 0 is returned. The index is 1 based.

Example:
STRING_INPUT IN$[100];

INTEGER START_LOC;

CHANGE IN$

{

START_LOC = FIND(“XYZ”, IN$);

PRINT(“XYZ was found starting at position %d in %s\n”,

START_LOC, IN$);

}

If IN$ was set equal to “Hello, World!” then START_LOC would be 0 since “XYZ”
can not be found. If IN$ was equal to “CPE1704XYZXYZ”, then START_LOC
would be equal to 8.

Version:
SIMPL+ Version 1.00
220 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Gather

Name:
Gather

Syntax:
STRING Gather(STRING DELIMITER, STRING SOURCESTRING);

Description:
Concatenates the data from SOURCESTRING and issues it on the return string when
the specified delimiter has been reached. Note that when GATHER is executed, if
SOURCESTRING does not include the DELIMITER, then the equivalent of a
PROCESSLOGIC is performed. When the system returns to the GATHER, it will
once again check for the proper delimiter. In effect, section of code (a CHANGE
statement, for example) is held up at the GATHER until the proper data is received.

Parameters:
The gather function searches the SOURCESTRING for the DELIMITER string.

Return Value:
The concatenated string which includes the delimiter specified. Example:

BUFFER_INPUT COM$[100];

DIGITAL_INPUT trig;

STRING IN$[100];

PUSH trig

{

IN$ = GATHER(“\n”, COM$);

PRINT(“The value of IN$ is %s\n”, IN$);

}

In this example, the event is started when TRIG goes high. When data comes into
COM$, the GATHER statement is evaluated. The PRINT statement is never reached
until the delimiter \n (CRLF) is found. When the delimiter is found, then the string
will be printed. Note that the GATHERed string will have the \n on it.

NOTE: It makes sense only to use GATHER with STRING_INPUT or
BUFFER_INPUT types.
Language Reference Guide - DOC. 5797G SIMPL+® 221

Software Crestron SIMPL+ ®
Example:
BUFFER_INPUT COM$[100];

DIGITAL_INPUT trig;

STRING IN$[100];

CHANGE COM$

{

IN$ = GATHER(“\n”, COM$);

PRINT(“The value of IN$ is %s\n”, IN$);

}

In the 2-Series Control System processors, a GATHER that is waiting for data will
use up the next change of the BUFFER_INPUT until the terminating character is
encountered. That is, any CHANGE event handler for the BUFFER_INPUT will not
be called.

If, in the first event, COM$ contains the string “Hello”, the event will wait in the
GATHER. When the COM$ changes again to contain “World!\n”, the event will
immediately resume after the GATHER. The CHANGE COM$ event will only be
called once in this case. In the X-Generation Control Systems, the CHANGE event
would be called both times.

Version:
SIMPL+ Version 2.00
222 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
GetC

Name:
GetC

Syntax:
INTEGER GetC(BUFFER_INPUT SOURCE);

Description:
Returns the value at position 1 of SOURCE string and shifts the rest of the buffer up
by one. In this way, values may be picked out of a buffer for processing.

Parameters:
SOURCE is typically from a BUFFER_INPUT statement. It may be defined as a
STRING or STRING_INPUT, but since GETC removes characters from SOURCE,
the result is destructive to the source string.

Return Value:
An INTEGER containing a single character from position 1 of the buffer.

If there are no characters in the buffer for GETC to retrieve, then the value of 65535
is returned.

Example:
In this example, a buffer input is read until the character “A” is retrieved.

BUFFER_INPUT IN$[100];

INTEGER INCHAR;

CHANGE IN$

{

INCHAR = 0;

WHILE(INCHAR <> 'A')

INCHAR = GETC(IN$);

// continue processing.

}

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 223

Software Crestron SIMPL+ ®
Left

Name:
Left

Syntax:
STRING Left(STRING SOURCE, INTEGER NUM);

Description:
Takes the leftmost NUM characters of SOURCE and returns them in an output string.

Parameters:
SOURCE is a STRING containing the source string.

NUM is an INTEGER that tells LEFT how many characters to use in the
computation.

Return Value:
A string representing the leftmost NUM characters of SOURCE. If NUM is greater
than the number of characters in SOURCE, then the return is identical to SOURCE.

Example:
STRING_INPUT Var$[100];

STRING Temp$[100];

CHANGE Var$

{

Temp$ = LEFT(Var$, 5);

PRINT(“Left most 5 characters of %s are %s\n”, Var$, Temp$);

}

In this example, if Var$ is “abcdefghijk”, Temp$ will contain “abcde”.

Version:
SIMPL+ Version 1.00
224 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Len

Name:
Len

Syntax:
INTEGER Len(STRING SOURCE);

Description:
Returns the length of the actual string, not the declared maximum length.

Parameters:
SOURCE is a string whose length is to be determined.

Return Value:
A value from 0 - 65535, which gives the number of characters in the string. An empty
string returns a length of 0.

Example:
STRING_INPUT IN$[100];

INTEGER Temp;

CHANGE IN$

{

Temp = LEN(IN$);

PRINT(“The Length of %s is %d\n”, IN$, Temp);

}

In this example, if IN$ is equal to “This is a test” then Temp will contain the integer
14.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 225

Software Crestron SIMPL+ ®
Lower

Name:
Lower

Syntax:
STRING Lower(STRING SOURCE);

Description:
Takes a source string and converts characters with the values a-z (lowercase) to A-Z
(uppercase).

Parameters:
SOURCE is a string to be converted to lowercase. SOURCE is not modified, unless
it is also used as the return value, e.g., S$=LOWER(S$);

Return Value:
A STRING containing the lowercase version of SOURCE. Characters that do not fall
into the range A-Z are not modified and will stay as specified.

Example:
STRING_INPUT IN$[100];

STRING LOWER$[100];

CHANGE IN$

{

LOWER$ = LOWER(IN$);

PRINT(“Lowercase version of %s is %s\n”,IN$, LOWER$);

}

In this example, if IN$ contains “This is a Test 123!”, then LOWER$ will contain
“this is a test 123!”.

Version:
SIMPL+ Version 1.00
226 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Mid

Name:
Mid

Syntax:
STRING Mid(STRING SOURCE, INTEGER START, INTEGER NUM);

Description:
Returns a string NUM characters long from SOURCE, starting at position START.

Parameters:
SOURCE is a STRING containing the input string.

START is an INTEGER telling MID at which character position in SOURCE to start.
The first character of SOURCE is considered 1.

NUM is an INTEGER telling MID how many characters to use from SOURCE.

Return Value:
A string NUM characters long starting at START.

If START is greater than the length of SOURCE, an empty STRING is returned.

If NUM is greater than the total number of characters that can be retrieved starting
from START, only the remaining characters in SOURCE will be pulled. For
example, MID(“ABCD”, 2, 10) would return a STRING containing BCD.

Example:
STRING_INPUT Var$[100];

STRING Temp$[100];

CHANGE Var$

{

Temp$ = MID(Var$, 2, 5);

PRINT(“String starting at position 2 for 5 characters is
%s\n”,Temp$);

}

In this example, if Var$ contains “abcdefghijklmnop”, then Temp$ will contain
“bcdef”.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 227

Software Crestron SIMPL+ ®
Remove

Name:
Remove

Syntax:
STRING Remove(STRING DELIMITER, STRING SOURCESTRING

[, INTEGER POSITION]);

Description:
Begins searching a string <source> for the <delimiter> at the specified position, then
removes all characters from the beginning of the string <source> up to and including
the delimiter. Returns a string containing all of the removed characters.

Parameters:
DELIMITER is a string containing the string to match for.

Search within the string, SOURCESTRING is the string to search within.

POSITION is an optional integer which specifies how many characters into
SOURCESTRING to start. It defaults to 1, which is the first character of
SOURCESTRING.

Return Value:
If the specified DELIMITER is found, the contents of the source string, up to and
including the delimiter are returned. The original source string is modified.

Example:
BUFFER_INPUT SOURCE$[50];

STRING OUTPUT$[50];

CHANGE SOURCE$

{

OUTPUT$ = REMOVE(“abc”, SOURCE$);

}

In this example, if SOURCE$ were “testabc123”, then OUTPUT$ would be “testabc”
and SOURCE$ would contain “123”.

BUFFER_INPUT SOURCE$[50];

STRING OUTPUT$[50];

CHANGE SOURCE$

{

OUTPUT$ = REMOVE(“abc”, SOURCE$, 6);

}

If SOURCE$ were “testabcabc123”, then OUTPUT$ would be “testabcabc” and
SOURCE$ would contain “123”.

Version:
SIMPL+ Version 2.00
228 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
REVERSEFIND

Name:
ReverseFind

Syntax:
INTEGER ReverseFind(STRING MATCH_STRING, STRING
SOURCE_STRING

[, INTEGER START_POSITION]);

Description:
Finds the position in SOURCE_STRING where MATCH_STRING last occurs.

Parameters:
MATCH_STRING is a STRING containing the searched for data.

SOURCE_STRING is a STRING containing the data to be searched.

START_POSITION is an INTEGER which tells REVERSEFIND at what character
in the string to start the search, and is 1 based. If it is not specified, it defaults to the
end of the string.

Return Value:
The index of where MATCH_STRING last occurs (going right to left) in
SOURCE_STRING. If the data can not be found, or POSITION exceeds the length
of the SOURCE_STRING then 0 is returned. The index is 1 based.

Example:
STRING_INPUT IN$[100];

INTEGER START_LOC;

CHANGE IN$

{

START_LOC = REVERSEFIND(“XYZ”,IN$);

PRINT(“last XYZ occurance was found at position %d in %s\n”,
START_LOC,IN$);

}

If IN$ was set equal to “Hello, World!” then START_LOC would be 0 since “XYZ”
can not be found. If IN$ was equal to “CPE1704XYZXYZ”, then START_LOC
would be equal to 11.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 229

Software Crestron SIMPL+ ®
Right

Name:
Right

Syntax:
STRING Right(STRING SOURCE, INTEGER NUM);

Description:
Takes the rightmost NUM characters of SOURCE and returns them in an output
string.

Parameters:
SOURCE is a STRING containing the source string.

NUM is an INTEGER that tells RIGHT how many characters to use in the
computation.

Return Value:
A string representing the rightmost NUM characters of SOURCE. If NUM is greater
than the number of characters in SOURCE, then the return is identical to SOURCE.

Example:
STRING_INPUT Var$[100]

STRING Temp$[100];

CHANGE Var$

{

Temp$ = RIGHT(Var$, 5);

PRINT(“Right most 5 characters of %s are %s\n”, Var$, Temp$);

}

In this example, if Var$ contains “abcdefghijk”, then Temp$ contains “ghijk”.

Version:
SIMPL+ Version 1.00
230 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
SetString

Name:
SetString

Syntax:
INTEGER SetString(STRING SOURCE, INTEGER POSITION,
STRING DESTINATION);

Description:
Overwrites the bytes in DESTINATION with the bytes in SOURCE starting at
POSITION in the DESTINATION string.

Parameters:
DESTINATION is a STRING containing the string to be modified.

POSITION is an INTEGER referencing the starting byte to write at in
DESTINATION. 1 is the first byte of the string.

SOURCE is a STRING containing the string to use in the operation.

Return Value:
The new length or an error code as defined below:

For the purposes of the explanation, a string has been declared STRING
DESTINATION[MAX_LEN]. The string has a current length defined by
LEN(DESTINATION).

e.g., If the specified position is beyond the declared length of the destination string:

If POSITION > MAX_LEN, no operation is performed and -8 is returned.

e.g., If the entire source string can't be inserted without exceeding the length of the
destination string:

If POSITION-1+LEN(SOURCE) > MAX_LEN, the operation is performed, the
string is truncated and -4 is returned.

e.g., If the position exceeds the current length of the destination:

If POSITION > LEN(DESTINATION), the string is padded with spaces and -2
is returned.

e.g., If the source string will make the destination string longer:

If POSITION-1+LEN(SOURCE) > LEN(DESTINATION), the string will be
expanded to fit and -1 will be returned.

If the operation meets none of the above conditions, the new length is returned.

The return code may be ignored (as in the following example).

NOTE: If more than one condition is met (typically -2 and -1 would be met at the
same time), the codes are added together as the return value.

NOTE: The subroutine knows the max length of the destination string.
Language Reference Guide - DOC. 5797G SIMPL+® 231

Software Crestron SIMPL+ ®
Example:
STRING DESTINATION$[100];

DESTINATION$ = :\”Space XXXX To Fill”;

SETSTRING(“ABCD”, 7, DESTINATION$);

This would result in DESTINATION containing the string “Space ABCD To Fill”.
If the return code were used, it would contain 18 (the string length).

Version:
SIMPL+ Version 1.00
232 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Upper

Name:
Upper

Syntax:
STRING Upper(STRING SOURCE);

Description:
Takes a source string and converts characters with the values a-z (lowercase) to A-Z
(uppercase).

Parameters:
SOURCE is a string to be converted to uppercase. SOURCE is not modified, unless
it is also used as the return value, e.g., S$=UPPER(S$);

Return Value:
A STRING containing the uppercase version of SOURCE. Characters that do not fall
into the range a-z are not modified and will stay as specified.

Example:
STRING_INPUT IN$[100];

STRING UPPER$[100];

CHANGE IN$

{

UPPER$ = UPPER(IN$);

PRINT(“Uppercase version of %s is %s\n”,IN$, UPPER$);

}

In this example, if IN$ contains “Hello There 123!” then UPPER$ contains “HELLO
THERE 123!”.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 233

Software Crestron SIMPL+ ®
System Control

System Control Overview

These constructs control system behavior and may change the resultant flow of the
given SIMPL+ program.

Delay

Name:
Delay

Syntax:
Delay(INTEGER TIME);

Description:
Forces a task switch and starts a timer for the hundredths of a second specified by
TIME. The system continues with the statements after a delay when the delay time
has expired. Refer to “WAIT” on page 265.

Parameters:
TIME is the number of hundredths of a second to delay. For example, 500 specifies
a 5-second delay.

Return Value:
None.

Example:
// A delay of 525 hundredths of a second or 5.25 seconds

#define_constant MY_DELAY 525

DELAY(MY_DELAY);

Version:
SIMPL+ Version 1.00
234 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ProcessLogic

Name:
ProcessLogic

Syntax:
ProcessLogic();

Description:
Forces a task switch away from the current SIMPL+ module, so that the SIMPL
Windows program can process the outputs of the SIMPL+ module. Refer to the
discussion on Task Switching on page 25.

Parameters:
None.

Return Value:
None.

Example:
INTEGER X;

ANALOG_OUTPUT I;

FOR(X=0 TO 25)

{

I = X;

PROCESSLOGIC();

}

In this example, the analog output I is updated every pass through the loop. Logic
dependent upon the analog value will refer to the new analog value every pass
through the loop.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 235

Software Crestron SIMPL+ ®
Pulse

Name:
Pulse

Syntax:
Pulse(TIME, DIGITAL_OUTPUT OUT);

Description:
Pulses the output high then low for the specified length of time (in hundredths of a
second). When the pulse starts, a task switch is performed so other logic can be
processed. If the output is already high, the SIMPL Windows logic processor will not
see a change and no further actions will be triggered.

Parameters:
TIME is the number of hundredths of a second to pulse. For example, 500 specifies
a 5-second delay.

OUT is a DIGITAL_OUTPUT that is to be pulsed.

Return Value:
None.

Example:
// A pulse of 525 hundredths of a second or 5.25 seconds

#define_constant MY_PULSE_TIME 525

DIGITAL_OUTPUT OutputToPulse;

PULSE(MY_PULSE_TIME, OutputToPulse);

This will execute immediately and output a pulse of 5.25 seconds to the digital output
OutputToPulse.

Version:
SIMPL+ Version 1.00

NOTE: (X-Gen only)Elements of a DIGITAL_OUTPUT array cannot be used within
the Pulse function.
236 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
TerminateEvent

Name:
TerminateEvent

Syntax:
TerminateEvent;

Description:
Exits a CHANGE, PUSH, or RELEASE event. It may also be used to exit a loop in
the main() function if desired. TERMINATEEVENT cannot be used inside of a
function.

Example:
INTEGER X;

ANALOG_INPUT Y;

CHANGE Y

{

X=0;

WHILE(X<25)

{

IF(Y = 69)

TerminateEvent;

X = X + 1;

PRINT(“X=%d\n”, X);

}

}

In this example, the CHANGE event will terminate if the ANALOG_INPUT Y
equals the value of 69. Otherwise, the CHANGE will exit after the WHILE loop
finishes.

Version:
SIMPL+ Version 2.00 - No longer allowed inside functions, RETURN should

be used. Existing code that relies on the event terminating should be
revised.

SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 237

Software Crestron SIMPL+ ®
System Interfacing

System Interfacing Overview

These functions control the way the SIMPL+ program communicates with Cresnet
network devices and the CPU.

GenerateUserNotice

Name:
GenerateUserNotice

Syntax:
GenerateUserNotice(<Static Specification String> [, <arg1>
...]);

Description:
Places a notification message into the control system's error log

Parameters:
<Static Specification String> is a quoted string that contains text and formatting
information. Format specifiers are of the form: %[[Pad]Width]specifier

Refer to “Print” on page 216 for a list and description of valid Format Specifiers.

Return Value:
None.

Example:
 Function MyFunc()

 {

STRING sNotice;

sNotice = "Projector";

GenerateUserNotice("The %s bulb has a total of %d
hours", sNotice, 500);

 }

Version:
SIMPL+ Version 3.01.07

Control System:
2-Series Only
238 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
GenerateUserWarning

Name:
GenerateUserWarning

Syntax:
GenerateUserWarning(<Static Specification String> [, <arg1>
...]);

Description:
Places a warning message into the control system's error log

Parameters:
<Static Specification String> is a quoted string that contains text and formatting
information. Format specifiers are of the form: %[[Pad]Width]specifier

Refer to “Print” on page 216 for a list and description of valid Format Specifiers.

Return Value:
None.

Example:
 Function MyFunc()

 {

STRING sWarning;

sWarning = "Projector";

GenerateUserWarning("The %s bulb has a total of %d
hours", sWarning, 800);

 }

Version:
SIMPL+ Version 3.01.07

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 239

Software Crestron SIMPL+ ®
GenerateUserError

Name:
GenerateUserError

Syntax:
GenerateUserError(<Static Specification String> [, <arg1>
...]);

Description:
Places an error message into the control system's error log

Parameters:
<Static Specification String> is a quoted string that contains text and formatting
information. Format specifiers are of the form: %[[Pad]Width]specifier

Refer to “Print” on page 216 for a list and description of valid Format Specifiers.

Return Value:
None.

Example:
 Function MyFunc()

 {

STRING sError;

sError = "Projector";

GenerateUserError("The %s bulb has exceeded %d hours",
sError, 1000);

 }

Version:
SIMPL+ Version 3.01.07

Control System:
2-Series Only
240 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
CheckForNVRAMDisk

Name:
CheckForNVRAMDisk

Syntax:
INTEGER CheckForNVRAMDisk()

Description:
Tests whether or not an NVRam Disk is currently installed in the control system.

Parameters:
None.

Return Value:
Returns 1 if an NVRam Disk is currently installed in the control system.

Example:
(Refer to “File Functions Overview” on page 116)

 IF (CheckForNVRAMDisk() = 1)
 PRINT ("NVRAM Disk found");

Version:
SIMPL+ Version 3.01.07 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 241

Software Crestron SIMPL+ ®
Time & Date Functions

Time and Date Functions Overview
Time and Date functions in a given SIMPL+ program are used to retrieve information
about the current date and time from the system clock. Values can be retrieved as
either text strings i.e. “January” or as integer values. Typically, integer values are
used if computations need to be performed (i.e. when the date is the 25th, perform a
specific action).

Date
Name:
Date

Syntax:
STRING Date(INTEGER FORMAT);

Description:
Returns a string corresponding to the current date with the specified FORMAT.

Parameters:
FORMAT is an integer describing the way to format the date for the return. Valid
formats are 1 through 4.

FORMAT 1 returns a string in the form MM/DD/YYYY
FORMAT 2 returns a string in the form DD/MM/YYYY
FORMAT 3 returns a string in the form YYYY/MM/DD
FORMAT 4 returns a string in the form MM/DD/YY
In format 4, the year 2000 is shown as 00. Digits 58 - 99 are treated as 1958-1999 and
00-57 are treated as 2000 through 2057.

Return Value:
A STRING corresponding to the current date.

Example:
STRING TheDate$[100];

FUNCTION MAIN()

{

TheDate$=DATE(1);

PRINT(“The date is %s\n”, TheDate$);

}

This would print a string such as “The date is 03/25/2002”.

Version:
SIMPL+ Version 1.00
242 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Day

Name:
Day

Syntax:
STRING Day();

Description:
Returns the day of the week as a STRING.

Parameters:
None.

Return Value:
The day of the week is returned in a string. Valid returns are Sunday, Monday,
Tuesday, Wednesday, Thursday, Friday, or Saturday.

Example:
STRING TheDay$[100];

FUNCTION MAIN()

{

TheDay$=DAY();

PRINT(“The day of the week is %s\n”, TheDay$);

}

An example output of this would be “The day of the week is Monday”.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 243

Software Crestron SIMPL+ ®
GETDATENUM

Name:
GetDateNum

Syntax:
INTEGER GetDateNum();

Description:
Returns an integer corresponding to the current day of the month.

Parameters:
None.

Return Value:
The day of the month as an integer from 1 to 31.

Example:
INTEGER NumDateOfMonth;

FUNCTION MAIN()

{

NumDateOfMonth = GetDateNum();

PRINT(“The current day of the month is %d\n”, NumDateOfMonth);

}

An example output of this would be “The current day of the month is 25”.

Version:
SIMPL+ Version 1.00
244 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
GETDAYOFWEEKNUM

Name:
GetDayOfWeekNum

Syntax:
INTEGER GetDayOfWeekNum();

Description:
Returns an integer corresponding to the current day of the week.

Parameters:
None.

Return Value:
The day of the week as an integer from 0 to 6; 0 represents Sunday to 6 representing
Saturday.

Example:
INTEGER NumDayOfWeek;

FUNCTION MAIN()

{

NumDayOfWeek = GetDayOfWeekNum();

PRINT(“The current day of the week is %d\n”, NumDayOfWeek);

}

An example output of this would be “The current day of the week is 4”.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 245

Software Crestron SIMPL+ ®
GETHOURNUM

Name:
GetHourNum

Syntax:
INTEGER GetHourNum();

Description:
Returns an integer corresponding to the number of hours in the current time.

Parameters:
None.

Return Value:
The number of hours from 0 to 23 (24-hour time format).

Example:
INTEGER NumHours;

FUNCTION MAIN()

{

NumHours = GetHourNum();

PRINT(“The Number of hours on the clock is %d\n”, NumHours);

}

An example output of this would be “The Number of hours on the clock is 22”.

Version:
SIMPL+ Version 1.00
246 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
GETHSECONDS

Name:
GetHSeconds

Syntax:
INTEGER GetHSeconds();

Description:
Returns an integer corresponding to the number of hundredths of a second based on
the system clock. Typically, this function could be used for very fine timing, to
determine if a specific amount of time has elapsed.

Parameters:
None.

Return Value:
The number of hundredths of a second based on the system clock.

Example:
INTEGER OldTime, NewTime, Loop;

Loop=0;

OldTime=GETHSECONDS();

WHILE(Loop < 10000)

{

Loop = Loop + 1

}

NewTime=GETHSECONDS();

PRINT (“Elapsed Time is %d hundredths of a second.\n”,

Newtime-OldTime);

The output of this code would be “Elapsed Time is 400 hundredths of a second.”

Version:
SIMPL+ Version 1.00

NOTE: This is bad programming as it ties up the CPU.
Language Reference Guide - DOC. 5797G SIMPL+® 247

Software Crestron SIMPL+ ®
GETMINUTESNUM

Name:
GetMinutesNum

Syntax:
INTEGER GetMinutesNum();

Description:
Returns an integer corresponding to the number of minutes in the current time.

Parameters:
None.

Return Value:
The number of minutes from 0 to 59.

Example:
INTEGER NumMinutes;

FUNCTION MAIN()

{

NumMinutes = GetMinutesNum();

PRINT(“The Number of minutes on the clock is %d\n”,
NumMinutes);

}

An example output of this would be “The Number of minutes on the clock is 33”.

Version:
SIMPL+ Version 1.00
248 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
GETMONTHNUM

Name:
GetMonthNum

Syntax:
INTEGER GetMonthNum();

Description:
Returns an integer corresponding to the current month of the year.

Parameters:
None.

Return Value:
The month of the year as an integer from 1 to 12.

Example:
INTEGER NumMonth;

FUNCTION MAIN()

{

NumMonth = GetMonthNum();

PRINT(“The current month of the year is %d\n”, NumMonth);

}

An example output of this would be “The current month of the year is 9”.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 249

Software Crestron SIMPL+ ®
GETSECONDSNUM

Name:
GetSecondsNum

Syntax:
INTEGER GetSecondsNum();

Description:
Returns an integer corresponding to the number of seconds in the current time.

Parameters:
None.

Return Value:
The number of seconds from 0 to 59.

Example:
INTEGER NumSeconds;

FUNCTION MAIN()

{

NumSeconds = GetSecondsNum();

PRINT(“The Number of seconds on the clock is %d\n”,
NumSeconds);

}

An example output of this would be “The Number of seconds on the clock is 25”.

Version:
SIMPL+ Version 1.00
250 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
GETTICKS

Name:
GetTicks

Syntax:
INTEGER GetTicks();

Description:
Returns an integer corresponding to the number of system ticks. Each tick is 1/112.5
seconds on an X-generation control system, or 0.01 seconds on a 2-series control
system. Typically, this function could be used for very fine timing, to determine if a
specific amount of time has elapsed. The use of this function is discouraged,
GetHSeconds() should be used instead.

Parameters:
None.

Return Value:
The number of ticks in the clock.

Example:
INTEGER OldTime, NewTime, Loop;

Loop=0;

OldTime=GETTICKS();

WHILE(Loop < 10000)

{

Loop = Loop + 1;

}

NewTime=GETTICKS();

PRINT(“Elapsed Time is %d ticks\n”, Newtime-OldTime);

An example output from this code fragment would be “Elapsed Time is 7000 ticks”.

Version:
SIMPL+ Version 1.00

NOTE: This is bad programming as it ties up the CPU.
Language Reference Guide - DOC. 5797G SIMPL+® 251

Software Crestron SIMPL+ ®
GETYEARNUM

Name:
GetYearNum

Syntax:
INTEGER GetYearNum();

Description:
Returns an integer corresponding to the current year.

Parameters:
None.

Return Value:
The year as an integer. The full year is specified. For example, the year 2000 will
return the integer 2000.

Example:
INTEGER NumYear;

FUNCTION MAIN()

{

NumYear = GetYearNum();

PRINT(“The current year is %d\n”, NumYear);

}

An example output from this would be “The current year is 1999”.

Version:
SIMPL+ Version 1.00
252 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
MONTH

Name:
Month

Syntax:
STRING Month();

Description:
Returns the current month as a string.

Parameters:
None.

Return Value:
The current month is returned in a string. Valid returns are January, February, March,
April, May, June, July, August, September, October, November, or December.

Example:
STRING TheMonth$[100];

FUNCTION MAIN()

{

TheMonth$=MONTH();

PRINT(“The Month is %s\n”, TheMonth$);

}

An example output of this would be “The Month is September”.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 253

Software Crestron SIMPL+ ®
SETCLOCK

Name:
SetClock

Syntax:
SetClock(INTEGER HOURS, INTEGER MINUTES, INTEGER
SECONDS);

Description:
Sets the system clock.

Parameters:
HOURS is an integer containing the hour portion of the time to which the clock is set.
HOURS is expressed in 24-hour format, which can range from 0 to 23.

MINUTES is an integer containing the minutes portion of the time to which the clock
is set. MINUTES range from 0 to 59.

SECONDS is an integer containing the seconds portion of the time to which the clock
is set. SECONDS range from 0 to 59.

Return Value:
None.

Example:
ANALOG_INPUT Hours, Minutes, Seconds;

CHANGE Hours, Minutes, Seconds

{

SetClock(Hours, Minutes, Seconds);

PRINT(“Current Time is: %s\n”, Time());

}

In this example, the Hours, Minutes, and Seconds are specified from an external
SIMPL Program. For example, if Hours = 5, Minutes = 10, Seconds = 25, then the
output will be Current Time is: 05:10:25.

Version:
SIMPL+ Version 2.00
254 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
SETDATE

Name:
SetDate

Syntax:
SetDate(INTEGER MONTH, INTEGER DAY, INTEGER YEAR);

Description:
Sets the system date.

Parameters:
MONTH is an integer containing the month to which the date is set. A valid range is
1 through 12, corresponding to January through December.

DAY is an integer containing the day of the month to which the date is set. The range
varies from month to month, but always starts at 1.

YEAR is an integer containing the year to which the date is set. The year is four
digits, i.e. 1999.

Return Value:
None.

Example:
ANALOG_INPUT Month, Day, Year;

CHANGE Month, Day, Year

{

SetDate(Month, Day, Year);

PRINT(“Current Date is: %s\n”, Date(1));

}

In this example, Month, Day, and Year come from a SIMPL Windows program. For
example, if Month = 12, Day = 25, Year = 1999, the output from this program will
be Current Date = 12/25/1999.

Version:
SIMPL+ Version 2.00
Language Reference Guide - DOC. 5797G SIMPL+® 255

Software Crestron SIMPL+ ®
TIME

Name:
Time

Syntax:
STRING TIME();

Description:
Returns a string containing the current system time.

Parameters:
None.

Return Value:
The return string contains the time in HH:MM:SS format, in 24-hour time. If a value
is not two digits wide, it is padded with leading zeros.

Example:
STRING TheTime$[100];

FUNCTION MAIN()

{

TheTime$=TIME();

PRINT(“The Time is %s\n”, TheTime$);

}

An example output from this would be “The Time is 14:25:32”.

Version:
SIMPL+ Version 1.00
256 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Wait Events
Wait Events Overview
When writing a SIMPL+ program, it is often desirable to have an event that will be
processed a predetermined amount of time after it is triggered. The WAIT event
allows a block of code to be executed after a specified amount of time. There are
related functions which allow WAITS to be paused, resumed, cancelled, or have their
times changed. The system supports up to 200 total timed events that may be running
at any given time across all SIMPL+ modules.

Timed events include: WAIT, DELAY, and PAUSE statements.

A WAIT statement differs from a DELAY in both timing and order of statement
execution. In a WAIT statement, the WAIT block executes only after the specified
amount of time, but execution proceeds immediately to the statement following the
WAIT block. In a DELAY, all execution is halted until the delay is finished.
Language Reference Guide - DOC. 5797G SIMPL+® 257

Software Crestron SIMPL+ ®
CancelAllWait
Name:
CancelAllWait

Syntax:
CancelAllWait();

Description:
Cancels all WAIT events for the current SIMPL+ program. When an event is
cancelled, it is removed from the wait list and will not activate. There is no effect on
wait events that have finished running.

Parameters:
None.

Return Value:
None.

Example:
DIGITAL_INPUT Trig, KillWaits;

PUSH Trig

{

WAIT(1000, FirstWait)

}

PRINT(“Wait 1 Triggered!\n”);

{

WAIT(2000, SecondWait)

}

PRINT(“Wait 2 Triggered!\n”);

}

}

PUSH KillWaits

{

CancelAllWait();

}
In this example, when Trig is pushed, a 10-second and 20-second event are
scheduled. Whichever wait events are still running when KillWaits is
triggered, will be removed from the Wait list and will not get activated.

Version:
SIMPL+ Version 1.00
258 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
CancelWait

Name:
CancelWait

Syntax:
CancelWait(NAME);

Description:
Cancels a specified named WAIT event in the current SIMPL+ program. When an
event is cancelled, it is removed from the wait list and will not activate. There is no
effect if the wait event has finished running.

Parameters:
NAME is a name of a previously defined and named WAIT event.

Return Value:
None.

Example:
DIGITAL_INPUT Trig, KillWaits;

PUSH Trig
{

WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
{
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”);
}

}
PUSH KillWaits
{
Cancelwait(FirstWait);
}

In this example, when Trig is pushed, a 10-second and 20-second event are
scheduled. When KillWaits is triggered, if FirstWait is still on the wait list, it will be
removed from the wait list and will not get activated. SecondWait will activate at the
end of the 20-second wait time.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 259

Software Crestron SIMPL+ ®
PauseAllWait

Name:
PauseAllWait

Syntax:
PauseAllWait();

Description:
Pauses all WAIT events for the current SIMPL+ program. When an event is paused,
the timer for it freezes and may later be resumed, retimed, or cancelled. When a wait
is resumed, it executes the remaining time from when it was paused until the defined
wait time.

Parameters:
None.

Return Value:
None.

Example:
DIGITAL_INPUT Trig, PauseWaits;

PUSH Trig
{

WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);

 {
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”;
}

}
PUSH PauseWaits
{
PauseAllWaits();
}

In this example, when Trig is pushed, a 10-second and 20-second event is scheduled.
When PauseWaits is triggered, any of the running WAIT events will be halted, but
may later be resumed, cancelled, or retimed.

Version:
SIMPL+ Version 1.00
260 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
PauseWait

Name:
PauseWait

Syntax:
PauseWait(NAME);

Description:
Pauses a specified named WAIT event in the current SIMPL+ program. When an
event is paused, the timer for it freezes and may later be resumed, retimed, or
cancelled. When a wait is resumed, it executes the remaining time from when it was
paused until the defined wait time.

Parameters:
NAME is a name of a previously defined and named WAIT event.

Return Value:
None.

Example:
DIGITAL_INPUT Trig, PauseWait;

PUSH Trig
{

WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
{
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”;
}

}
PUSH PauseWait
{
PauseWait(SecondWait);

}

In this example, when Trig is pushed, a 10-second and 20-second event is scheduled.
When PauseWait is triggered, the SecondWait event will be paused if it has not
already run to completion. It may be later cancelled, resumed, or retimed.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 261

Software Crestron SIMPL+ ®
ResumeAllWait

Name:
ResumeAllWait

Syntax:
ResumeAllWait();

Description:
Resumes all WAIT events for the current SIMPL+ program that had been previously
paused. The WAIT will execute when the time from when it was frozen until the
specified wait time has elapsed.

Parameters:
None.

Return Value:
None.

Example:
DIGITAL_INPUT Trig, PauseWaits, ResumeWaits;

PUSH Trig
{

WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);

 {
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”;
}

}
PUSH PauseWaits
{
PauseAllWait();
}
PUSH ResumeWaits
{
ResumeAllWaits();
}

In this example, when Trig is pushed, a 10-second and 20-second event is scheduled.
When PauseWaits is triggered, any of the running WAIT events will be halted. When
ResumeWaits is triggered, the previously paused waits will resume from when they
were paused. For example, if FirstWait and SecondWait were paused at 5-second,
when ResumeAllWait is called, FirstWait will have 5-seconds more to execute and
SecondWait will have 15-seconds more to execute.

Version:
SIMPL+ Version 1.00
262 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ResumeWait

Name:
ResumeWait

Syntax:
ResumeWait(NAME);

Description:
Resumes the specified named WAIT event in the current SIMPL+ program that has
been previously paused. The WAIT will execute from the time when it was paused
until the specified wait time has elapsed.

Parameters:
NAME is a name of a previously defined and named WAIT event.

Return Value:
None.

Example:

DIGITAL_INPUT Trig, PauseWaits, ResumeWaits;
PUSH Trig
{

WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
 {
WAIT(2000, SecondWait)
}
PRINT(“Wait 2 Triggered!\n”;
}

}
PUSH PauseWaits
{
PauseAllWait();
}
PUSH ResumeWait
{
ResumeWait(FirstWait);
}

In this example, when Trig is pushed, a 10-second and 20-second event is
scheduled. When PauseWaits is triggered, any of the running WAIT events
will be halted. When ResumeWaits is triggered, the FirstWait event that was
previously paused will resume from when it was paused. For example, if
FirstWait was paused at 5-seconds, when ResumeWait(FirstWait) is called,
FirstWait will have 5-seconds more to execute. SecondWait will still be
paused.

Version:
SIMPL+ Version 1.00
Language Reference Guide - DOC. 5797G SIMPL+® 263

Software Crestron SIMPL+ ®
RetimeWait

Name:
RetimeWait

Syntax:
RetimeWait(INTEGER TIME, NAME);

Description:
Changes the time for a wait event in progress. When a WAIT is retimed, the WAIT
is restarted. For example, if a 5-second wait is 3-second in, and it is retimed to 10-
second, a full 10-seconds must elapse before the WAIT triggers.

Parameters:
TIME is an integer that specifies the new wait time in hundredths of a second. If time
is set to 0, the event will occur immediately.

NAME is a name of a previously defined WAIT event.

Return Value:
None.

Example:
DIGITAL_INPUT Trig, ChangeWaitTime;

PUSH Trig
{

WAIT(1000, FirstWait)
}
PRINT(“Wait 1 Triggered!\n”);
}

}
PUSH ChangeWaitTime
{
RetimeWait(500, FirstWait);
}

In this example, when Trig is pushed, a 10-second event is scheduled. If
ChangeWaitTime is activated while FirstWait is still running, the time will be reset
to 5-seconds. If FirstWait has expired, no action will be taken.

Version:
SIMPL+ Version 1.00
264 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Wait

Name:
Wait

Syntax:
Wait(INTEGER TIME[, NAME])

[{]

<statements>

[}]

Description:

Adds an event to a list to be executed in TIME hundredths of a second. Giving a
WAIT a name is optional, but to cancel, pause, resume, or retime a wait, a name must
be specified. A currently running WAIT will finish before being entered into the
WAIT list again. For example, if in an endless WHILE loop, a second WAIT will
only begin after the first finishes.

When the system encounters a WAIT, the event is put into the WAIT scheduler. The
SIMPL+ module continues to execute without interruption. At some point, a task
switch will occur (either due to event termination or other means, refer to "Task
Switching" that begins on page 8). The WAIT schedule is checked by the operating
system after a task switch, and if a wait event needs to be serviced, it is run and then
terminates. Note that the module may task switch away while inside the WAIT, just
like in other events.

AWAIT statement differs from a DELAY in both timing and order of statement
execution. In a WAIT statement, the WAIT block executes only after the specified
amount of time, but execution proceeds immediately to the statement following the
WAIT block. In a DELAY, all execution is halted until the delay is finished.

Parameters:
TIME is an integer, expressed in hundredths of a second. For example, 525 specifies
a wait time of 5.25 seconds.

NAME is an optional name given to the WAIT event. It has the same syntax as a
variable name. Note that you cannot put two separate WAIT statements in the same
SIMPL+ program that have the same NAME (this will cause a compilation error).

NOTE: There is no semicolon after a WAIT statement because it has a clause or block
following it.

NOTE: (2-Series Only) The only variable types that are allowed to be used within a
Wait Statement block are global variables and variables declared locally within the
Wait Statement's block. Local variables declared within the function containing the
Wait Statement are not allowed.
Language Reference Guide - DOC. 5797G SIMPL+® 265

Software Crestron SIMPL+ ®
Example:
INTEGER WaitTime;

DIGITAL_INPUT StopVCR;

ANALOG_INPUT SysWait;

STRING_OUTPUT VCR$;

PUSH StopVCR

{

WAIT (SysWait, VCR_Stop)

{

VCR$ = “\x02STOP\x03”;

}

}

FUNCTION MyFunc()

{

while (1)

{

// statements (will keep executing during the wait
statement)

Wait(500)

{

// statements (execute once for each wait statement
occurence)

}

// statements (will keep executing during the wait
statement)

}

}

In this example, a VCR is triggered to go into STOP, but the STOP command is
delayed based upon a time specified by an analog input to the SIMPL+ program.

Version:
SIMPL+ Version 3.00 - local variables are allowed within WAIT statements.

SIMPL+ Version 1.00
266 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
User Defined Functions

User Defined Functions Overview

A SIMPL+ program may have functions that are defined by users. Typically, a
function is defined to modularize code to make repetitive tasks easier to perform or
make code easier to read.

Function Definition

<function_type> <function_name> ([argument list])

{

<statements>

[RETURN <expression>;]

}

The following table demonstrates what <function_type> may be, what it means, and
what data may be returned to the caller. Note that in all cases, a RETURN is not
required, as the system defaults it to a shown specified value.

<function type> MEANING RETURN VALUE
FUNCTION Returns no data to the

caller.
No RETURN

INTEGER_FUNCTION Returns an integer value to
the caller.

INTEGER expression

(default 0)
LONG_INTEGER_FUNCTION Returns a long integer

value to the caller.
LONG_INTEGER expression

(default 0)
SIGNED_INTEGER_FUNCTION Returns a signed integer

value to the caller.
SIGNED_INTEGER expression

(default 0)
SIGNED_LONG_INTEGER_FUNCTION Returns a signed long

integer value to the caller.
SIGNED_LONG_INTEGER expression

(default 0)
STRING_FUNCTION Returns a string value to

the caller.
STRING expression

(default ““)
Language Reference Guide - DOC. 5797G SIMPL+® 267

Software Crestron SIMPL+ ®
Function Parameters

Functions may contain a list of parameters that are passed by the caller. Typically,
data is passed to a function in order to make the code readable, maintainable, and less
prone to bugs. SIMPL+ Version 1.00 did not allow data to be passed to functions. The
only way to get data into functions was to declare global variables and have the
functions reference the global variables.

The function argument list contains a comma separated list of arguments. The
arguments are of the form:

[ByRef | ByVal] <INTEGER | LONG_INTEGER | SIGNED_INTEGER
| SIGNED_LONG_INTEGER | STRUCTURE> <variable_name>

ByRef and ByVal are keywords telling the system the read/write permissions and
local behavior for the variable in the function. They are discussed in the next section.

INTEGER, STRING or STRUCTURE tells the function the<variable_name> type.
BUFFER_INPUT, STRING_INPUT, STRING_OUTPUT, and STRING
declarations are passed into a function using the STRING type. All other types are
passed using the INTEGER type.

The function refers to the passed variable as <variable_name>. Note that for a one-
dimensional array, the syntax is <variable_name>[] and for a two-dimensional array
the syntax is <variable_name>[][].

NOTE: Passing STRINGs with BYVAL and BYREF is not allowed in the 2-Series
Control System. All STRINGs are passed by referenced in the 2-Series Control
System.

NOTE: Passing I/O datatype variables (DIGITAL_INPUT, ANALOG_INPUT and
STRING_INPUT) is not allowed in the 2-Series Control System.
268 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
ByRef, ByVal, ReadOnlyByRef

Keyword Meanings

If not specified in the function declaration, variables will be passed by reference if
applicable. If the variable cannot be passed by reference (such as an element of an
array), it will be passed by value. Any expression will always be passed by value.

The following table shows legal access methods for the basic data types when passed
to a function.

NOTE: Passing STRINGs with BYVAL an BYREF is not allowed in the 2-Series
Control System. All STRINGs are passed by referenced in the 2-Series Control
System.

NOTE: Passing I/O datatype variables (DIGITAL_INPUT, ANALOG_INPUT and
STRING_INPUT) is not allowed in the 2-Series Control System.

KEYWORD MEANING
ByRef Changes made to the variable that is passed to the function actually change the contents of the

source variable. Note that any change made to the source variable will be reflected in the function.
For example, if an INTEGER is passed ByRef and its state changes, the function will know about
the change. It is typically more efficient to pass a variable by reference because space is not taken
up by making local copies as with ByVal.

Also referred to as “Pass by Reference”.
ByVal The variable that is passed to the function has a local copy made of it. Changes made to the

variable in the function are made on a local copy. The local copy is destroyed when the function
terminates. The contents of this variable are a “snapshot” of the contents of the variable that was
passed. Unlike Pass by Reference, changes made to the original variable that was passed to the
function are not recognized in the function. When an expression is passed, it may only be passed
by value since there is no source variable that the ByRef keyword may potentially modify.

Also referred to as “Pass by Value”.
ReadOnlyByRef This performs a Pass by Reference, identical to ByRef, but the compiler catches operations that

write to the variable that has been passed. This would be typically be used if a DIGITAL_INPUT
or other input type has been passed and which cannot be written. It is also used as a tool to catch
unintentional writes to variables that have been passed.
Language Reference Guide - DOC. 5797G SIMPL+® 269

Software Crestron SIMPL+ ®
R: Read access allowed. W: Write access allowed.
(E1): Generates a RunTime Error, not allowed to be write to INPUT values. The
ReadOnlyByRef generates a compile error instead of a RunTime Error.

VARIABLE TYPE
ByVal

 [LOCAL
COPY]

ByRef

[SOURCE]

ReadOnlyByRef

[SOURCE]

ANALOG_INPUT R, W R, (E1) R
ANALOG_INPUT array - R, (E1) R
ANALOG_INPUT array element R,W - -
ANALOG_OUTPUT R,W - R
ANALOG_OUTPUT array - - R
ANALOG_OUTPUT array element R, W - -
BUFFER_INPUT R, W R R
BUFFER_INPUT array - R R
BUFFER_INPUT array element R, W - -
DIGITAL_INPUT R, W R, (E1) R
DIGITAL_INPUT array - R, (E1) R
DIGITAL_INPUT array element R, W - -
DIGITAL_OUTPUT R, W - R
DIGITAL_OUTPUT array - - R
DIGITAL_OUTPUT array element R, W - -
INTEGER R, W R, W R
INTEGER array - R, W R
INTEGER array element R, W - -
LONG_INTEGER R, W R, W R
LONG_INTEGER array - R, W R
LONG_INTEGER array element R, W - -
SIGNED_INTEGER R, W R, W R
SIGNED_INTEGER array - R, W R
SIGNED_INTEGER array element R, W - -
SIGNED_LONG_INTEGER R, W R, W R
SIGNED_LONG_INTEGER array - R, W R
SIGNED_LONG_INTEGER array element R, W - -
STRING R, W R, W R
STRING array - R, W R
STRING array element R, W - -
STRING_INPUT R, W R R
STRING_INPUT array - R R
STRING_INPUT array element R, W - -
STRING_OUTPUT - - -
270 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
R: Read access allowed. W: Write access allowed.

(E1): Generates a RunTime Error, not allowed to be write to INPUT values. The
ReadOnlyByRef generates a compile error instead of a RunTime Error.

An example of a function declaration that has no parameters and returns no value
would be:

FUNCTION PrintText()
{
// Code
}

The following is an example of a function declaration that takes an INTEGER and
returns a STRING. The INTEGER is passed by value, so it cannot be modified.

STRING_FUNCTION ComputeDate(ByVal INTEGER TheMonth)
{
STRING Month$[20];
// Code to compute Month$…
RETURN(Month$);
}

The following is an example of a function declaration that takes a STRING array and
sorts it and an integer that takes the actual number of elements that are contained in
the array. It returns an INTEGER error code:

INTEGER_FUNCTION SortNameInDatabase(STRING
Name[],INTEGER NumElements)
{
INTEGER Error;
// Code to sort Names[] and setError…
RETURN(Error);
}

VARIABLE TYPE
ByVal

 [LOCAL
COPY]

ByRef

[SOURCE]

ReadOnlyByRef

[SOURCE]

STRING_OUTPUT array - - -
STRING_OUTPUT array element - - -
STRUCTURE - R, W R
STRUCTURE element (INTEGER) R, W - -
STRUCTURE element (LONG_INTEGER) R, W - -
STRUCTURE element (SIGNED_INTEGER) R, W - -
STRUCTURE element (SIGNED_LONG_INTEGER) R, W - -
STRUCTURE element (STRING) - - -

NOTE: It is not strictly necessary to use the “ByVal” keyword here. ByVal can be
used to make sure that no modifications to the original variable are done by accident
within the function.
Language Reference Guide - DOC. 5797G SIMPL+® 271

Software Crestron SIMPL+ ®
Returning a Value

The syntax for returning a value from integer and string functions is RETURN
<expression>;. To return a value from a FUNCTION, PUSH, CHANGE, RELEASE
or EVENT, the syntax is RETURN.

Integer functions include INTEGER_FUNCTION,
SIGNED_INTEGER_FUNCTION, LONG_INTEGER_FUNCTION and
SIGNED_LONG_INTEGER_FUNCTION. String functions include
STRING_FUNCTION.

For Integer Functions, any valid integer expression is legal. For example:

RETURN (25);

RETURN (Z + MULDIV(A,B,C) + 100);

Are legal (assuming Z, A, B, C, are INTEGERs). If no RETURN statement is present
in an integer, 0 is returned.

For a string function, any valid string is legal (string expressions are not allowed). For
example:

STRING str[100];

RETURN “Hello!\n”;

RETURN (str);

Are legal (assuming Z is an INTEGER and A$ is a STRING). If no RETURN
statement is present in a STRING_FUNCTION, an empty string (““) is returned.

In SIMPL Version 3.00, the RETURN statement without arguments can be used in
all functions that do not return strings or integers. For example:

INTEGER_FUNCTION MyIntegerFn ()
{
IF (1)
{
RETURN (1);
}
RETURN (0);
}
LONG_INTEGER_FUNCTION MyLongIntFn ()
{
IF (1)
{
SIGNED_INTEGER_FUNCTION MySignedIntFn ()
{
IF (1)
{
RETURN (1);
}
RETURN (0);
}
SIGNED_LONG_ INTEGER_FUNCTION MySignedLongIntFn ()

NOTE: A zero (0) message is automatically returned if no return statement is
encountered.
272 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
{
IF (1)
{
RETURN (1);
}
RETURN (0);
}
STRING_FUNCTION MyStringFn ()
{
IF (1)
{
RETURN (“abc”);
}
RETURN (“def”);
}
FUNCTION MyFn ()
{
IF (1)
{
return;
}
}
EVENT
{
if (1)
return;
}
PUSH
{
if (1)
return;
}
RELEASE
{
if (1)
return;
}
CHANGE
{
if (1)
return;
}

Language Reference Guide - DOC. 5797G SIMPL+® 273

Software Crestron SIMPL+ ®
Calling a Function
When calling a function where the return is being used, the syntax is:

<variable> = <function_name>([argument_list]);

For example,

INTEGER X, ANALOG1, ANALOG2;

STRING Q$[20], B$[50];

X = ComputeChecksum(Analog1, Analog2);

Q$ = DoSomething(Analog1, B$);

Are legal.

If the return is not going to be used, or there is no return (in the case of a
FUNCTION), the syntax is:

<CALL> <function_name>([argument_list]);

For example,

CALL DoSomethingElse(); (X-Generation or 2-Series)

or

DoSomethingElse() ; (2-Series only)

NOTE: (X-Generation only) Functions do not support recursion, i.e. the code in the
body of a function may not contain a call to that function.

NOTE: The keyword, CALL, is required in the X-Generation control system, and
optional in the 2-Series control system. CALL may not be used when calling non-user
defined functions. For example:

CALL Print(str, “abc”); // Illegal
274 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Function Libraries

A function library is simply a group of functions in a SIMPL+ file. The file is saved
as a SIMPL+ Library File (*.USL), from the Save As dialog in the SIMPL+ editor.

In order to include a function library, the #CRESTRON_LIBRARY or
#USER_LIBRARY directives are used. The libraries are searched in the order they
are included, in case a function name is used in more than one library. The first
function found is used. Refer to #CRESTRON_LIBRARY and #USER_LIBRARY
for more information.

NOTE: A function may be placed in the same body of code as the caller. In some
cases, the same function needs to be used across several different modules. Although
the code could be rewritten in all modules (as was the case with SIMPL+ Version
1.00), SIMPL+ Version 2.00 supports function libraries.
Language Reference Guide - DOC. 5797G SIMPL+® 275

Software Crestron SIMPL+ ®
Program Structure

When a new SIMPL+ program is created, a template is provided that lists the order
in which constructs and statements should be defined. Sections can be uncommented
and expanded out to implement the desired code.

A SIMPL+ program layout would consist of, in order:

1. Compiler Directives

2. Input/Output definitions From/To a SIMPL Program

3. Global declarations for the module, including STRING, INTEGER,
arrays, structures, etc.

4. FUNCTION declarations

5. PUSH/RELEASE/CHANGE statements

6. FUNCTION MAIN

Forward references are not allowed in a SIMPL+ program. This means you cannot
CALL a function before it has been defined. This is the reason FUNCTION
declarations are placed before other code. If function A calls function B, then
function B should be located first in the source file.

FUNCTION MAIN is a special case function. It is not required, but any code present
between the { and } is executed at startup. This is typically used for initialization
purposes.

Example:
FUNCTION MAIN()

{

MyVar=0;

For(I=1 to 10)

B[I] = I;

}

Sometimes function MAIN() contains an endless loop with a DELAY statement that
executes periodically while the program runs.

NOTE: All of these are not mandatory and may be left out as needed.

NOTE: In SIMPL+ Version 3.00, local variables are allowed.
276 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Common Runtime Errors

Common Runtime Errors Overview
The following errors will occur at runtime. In order for these error messages to be
seen, the Crestron Viewport must be open and communications with the control
system (via Ethernet or the computer port) must be established.

Array out of bounds
An attempt was made to access an element of an array that is outside the declared
range of the array. For an array size declaration, the allowable indices are 0 through
the declared size. For example, INTEGER X[10][10] would allow access to X[0][0]
through X[10][10].

Bad printf format
The MAKESTRING or PRINT functions have encountered an invalid character
following the % character. The most common reason for this is when a % is actually
required, %% should be used to print a single % character. Refer to MAKESTRING
and PRINT for a full list of valid format specifiers.

Full Stack
The SWITCH construct may only have 32 CASE statements in SIMPL+ Version
1.00. If more than 32 are used, this error appears.

Library not found
This occurs when a module tries to call a user-defined function that exists in an
external library which was specified with #CRESTRON_LIBRARY or
#USER_LIBRARY. During compilation, the compiler builds a file containing the
libraries to send to the control system. Typically, this could be caused by a transfer
error which would be seen at load time.

Rstack overflow
The Rstack that this message refers to is the Return Stack. When an event is
interrupted by some means (via a process_logic statement or an implied task switch
from inside a loop), information about that event is put on the Return stack, so that
when the event resumes, it knows how to continue. When the event continues, the
saved information is removed from the return stack.

If during this interruption the event is called again, and interrupted again, more
information is saved on the return stack. The return stack is of limited size and if this
keeps occurring, the Return stack will not have enough space to contain more data
and this message will be issued.

For a further discussion of how to handle the programming when events are
interrupted, refer to “Task Switching” on page 22.
Language Reference Guide - DOC. 5797G SIMPL+® 277

Software Crestron SIMPL+ ®
Scheduler is full
Any time-based function such as DELAY, PULSE, or WAIT will schedule an event
in SIMPL+. A scheduled event will add one or more entries to the SIMPL+ scheduler.
The scheduler currently supports 200 events and is global to the entire SIMPL+
system. If the scheduler is full and another event is added, this message is issued.

String array out of bounds
An attempt was made to access an element of a string array that is outside the declared
range of the array. Remember that for an array size declaration, the allowable indices
are 0 through the declared size. For example, STRING X$[5][20] declares six strings
of 20 bytes each, accessed via X$[0] through X$[5].

Too much ram allocated
Too much RAM was allocated for the data structures. Approximately 60K is
available for user data. When compiling a program, it will tell you how much
memory is required for one instance of the module. Each instantiation of the module
in a SIMPL program takes up that much more space. For example, if a module says
it requires 100 bytes after it is compiled, two instances of that module will require
200 bytes. If this message is received, reduce the number of variables. If string or
buffers have been declared overly large, this is an easy place to reduce memory
requirements.

NOTE: The message “Skedder Full” is issued from a SIMPL program, not SIMPL+.
“Skedder full” is a similar problem, but results if too many time-based events are
occurring in a SIMPL program.
278 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example Programs

Example 1: Hello, World!

// A digital input from the SIMPL program DIGITAL_INPUT
TRIG;

// Upon the digital signal TRIG going high or low, the Hello,

// World! message is printed.

CHANGE TRIG

{

PRINT(“Hello, World!\n”);

}

// Main is only called once when the system starts up or is
reset.

FUNCTION MAIN()

{

PRINT(“Main Starts!\n”);

}

Language Reference Guide - DOC. 5797G SIMPL+® 279

Software Crestron SIMPL+ ®
Example 2: 8-Level switch on a Pesa switcher
#SYMBOL_NAME “Pesa Switcher - 8 Levels”

#HINT “Creates Pesa CPU-Link H command for Switching”

/
**

DIGITAL, ANALOG and SERIAL INPUTS and OUTPUTS

**
******/

// Digital trigger from the SIMPL program - this sends the
command

// string out.

DIGITAL_INPUT TRIG;

// Analogs for the output and 8 levels of the switcher from the

// SIMPL program.

ANALOG_INPUT

OUTPUT,LEVEL1,LEVEL2,LEVEL3,LEVEL4,LEVEL5,LEVEL6,LEVEL7,LEVE
L8;

// The output string that is to be sent from the SIMPL+ program
to

// the SIMPL program to the switcher.

STRING_OUTPUT COMMAND$;

/
**

Global Variables

(Uncomment and declare global variables as needed)

**
*/

INTEGER I, COUNT, CKSLOW, CKSHI;

STRING PESABUF[30];

/
**

Event Handlers

(Uncomment and declare additional event handlers as needed)

**
*/

PUSH TRIG

{

// Format command which stores the switcher command in a
280 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
// temporary buffer. A Command looks like
H{out}{l1}{l2}...{l8}

// {2 byte checksum}{CR}{LF} where {out} and {l1}..{l8} are 3

// digit ASCII bytes with leading zeros. An example is

// H001001002003004005006007008{2 bytes checksum}{CR}{LF}

//
makestring(PESABUF,”H%03d%03d%03d%03d%03d%03d%03d%03d%03d”,

// OUTPUT, LEVEL1, LEVEL2, LEVEL3, LEVEL4, LEVEL5, LEVEL6,

// LEVEL7, LEVEL8);

COUNT=0; // Checksum count initialized to 0.

// Add each byte in the string to the running count.

for(i=1 to len(pesabuf))

COUNT = COUNT + BYTE(PESABUF, I);

// The checksum is computed by taking the COUNT and throwing

// away all but the lower byte. The upper nibble + '0' is the

// high order checksum byte, the lower nibble + '0' is the low

// order checksum byte.

// Compute the low byte of the checksum.

CKSLOW = (COUNT & 0x0F) + '0';

// Compute the high byte of the checksum.

CKSHI = ((COUNT & 0xF0) >> 4) + '0';

// Send the checksum command to the COMMAND$ that gets routed

// to the switcher via the SIMPL program.

makestring(COMMAND$, “%s%s%s”, PESABUF, CHR(CKSLOW),

CHR(CKSHI));

}

Language Reference Guide - DOC. 5797G SIMPL+® 281

Software Crestron SIMPL+ ®
Example 3: Computing the Number of Days in a
Month (Using Functions)

#SYMBOL_NAME “Compute Number of Days in a Month”

#ANALOG_INPUT MONTH;

#ANALOG_OUTPUT DAYS;

INTEGER_FUNCTION ComputeDaysInMonth(INTEGER Month)

{

// Note that this computation does NOT take into account leap

// year!

INTEGER Days;

SWITCH (Month)

{

CASE(2): Days = 28; // February

CASE(4): Days = 30; // April

CASE(6): Days = 30; // June

CASE(9): Days = 30; // September

CASE(11): Days = 30; // November

Default: Days = 31; // All others

}

Return(Days);

}

CHANGE MONTH

{

DAYS = ComputeDaysInMonth(MONTH);

}

282 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example 4: Computing the Number of Days in a
Month (Using Function Libraries)
The following code would be saved as, in this example, “My Function Library.USL”.

INTEGER_FUNCTION ComputeDaysInMonth(INTEGER Month)

{

// Note that this computation does NOT take into account leap

// year!

INTEGER Days;

SWITCH(Month)

{

CASE(2): Days = 28; // February

CASE(4): Days = 30; // April

CASE(6): Days = 30; // June

CASE(9): Days = 30; // September

CASE(11): Days = 30; // November

Default: Days = 31; // All others

}

Return(Days);

}

The following code can be saved as any filename:

#SYMBOL_NAME “Compute Number of Days in a Month”

#USER_LIBRARY “My Function Library”

#ANALOG_INPUT MONTH;

#ANALOG_OUTPUT DAYS;

CHANGE MONTH

{

DAYS = ComputeDaysInMonth(MONTH);

}

Language Reference Guide - DOC. 5797G SIMPL+® 283

Software Crestron SIMPL+ ®
File Time and Date Functions Overview

These versions of the Time and Date functions in a given SIMPL+ program are used
to retrieve information about the current date and time from the file info structure
returned from FINDFIRST/FINDNEXT. Values can be retrieved as text strings i.e.
“January” or integer values. Typically, integer values are used if computations need
to be performed (i.e. when the date is the 25th, perform a specific action).

WriteLongIntegerArray

Name:
WriteLongIntegerArray

Syntax:
SIGNED_INTEGER WriteLongIntegerArray (INTEGER
file_handle,

LONG_INTEGER ilArray[m][n])

Description:
Writes the array from a file starting at the current file position. Two bytes are written,
most significant first containing the row dimension of the array, then two more bytes
are written, containing the column dimension of the array. Then each long integer is
written as a four byte quantity, most significant byte first. The integers are stored in
row-major order, e.g. all the elements of row 0 first, then the elements of row 1, etc.
Note that there is one more row and one more column than the dimensions that are
written, because there is a row 0 and a column 0. Refer to the section entitled
“Reading and Writing Data to a File” on page 118 for a discussion of when to use this
function and when to use the related functions: FileWrite, WriteInteger, WriteString,
WriteStructure, WriteSignedInteger, WriteLongInteger, WriteLongSignedInteger,
WriteIntegerArray, WriteSignedIntegerArray, WriteLongIntegerArray,
WriteLongSignedIntegerArray, WriteStringArray.

Parameters:
FILE_HANDLE specifies the file handle of the previously opened file (from
FileOpen).

ilArray is the array whose values are Write.

Return Value:
Number of bytes written to the file. If the return value is negative, it is an error code.
284 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
(Refer to "File Functions Overview"on page 116)

INTEGER nFileHandle, iErrorCode;

LONG_INTEGER ilArray[10];

nFileHandle = FileOpen (“MyFile”, _O_RDONLY);

IF (nFileHandle >= 0)

{

iErrorCode = WriteLongIntegerArray(nFileHandle, ilArray);

if (iErrorCode > 0)

PRINT (“Array written to file correctly.\n”);

else

PRINT (“Error code %d\n”, iErrorCode);

}

Version:
SIMPL+ Version 3.01 or higher (Pro 2 only)

Control System:
2-Series Only
Language Reference Guide - DOC. 5797G SIMPL+® 285

Software Crestron SIMPL+ ®
Compiler Errors and Warnings

Compiler Errors and Warnings Overview

The SIMPL+ program compiler errors and warnings are grouped into several
categories, as shown in the following table. Errors are listed in numerical order; page
links are provided to detailed descriptions of the errors.

Compiler Errors and Warnings

CATEGORY NUMBER MESSAGE TEXT PAGE
Syntax Errors 1000 '<identifier>' already defined page 289

1001 Undefined variable: ‘<identifier>’
Undefined function ‘<identifier>’

page 290

1002 Missing '<token>' page 292
1003 Incorrect type '<decl_type>', expected type(s): '<decl_type1[,decl_type2]

[,decl_typen]>'

Incorrect type, expected type(s): '<decl_type1[,decl_type2][,decl_typen]>'

page 293

1004 Unmatched symbol: '<identifier>' page 293
1005 Unexpected symbol in compiler directive: '<identifier>' page 294
1006 Invalid #DEFINE_CONSTANT value: '<identifier>' page 294
1007 Missing array index: '<identifier>' page 295
1008 Invalid integer argument or undefined variable: '<identifier>' page 296
1009 Missing structure member: '<identifier>'

Structure does not contain member: '<identifier>'
page 297

1010 Symbol Name contains illegal character: ';' page 298
1011 Missing return value page 298
1012 Unterminated string constant page 299
1013 Source code does not evaluate to anything page 299

Fatal Errors 1100 Statement outside of function scope page 300
1101 Abort - Error count exceeded <max_errors> page 301

Expression
Errors

1200 Invalid numeric expression: '<expression>'
Invalid string expression
Invalid expression: '<expression>'

page 301

1201 Invalid \\x sequence
Invalid \\x sequence: '<expression>'

page 303
286 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
CATEGORY NUMBER MESSAGE TEXT PAGE
Declaration
Errors

1300 Array size missing
Array size invalid

page 304

1301 Invalid array index page 305
1302 Variable name, ‘<identifier>’, exceeds maximum length of <max> characters page 306
1303 Declaration type not allowed within structure: '<identifier>'

Structure cannot contain String Arrays or Structure variables: Structure
definitions not allowed within other structures
Local Structure declarations are not allowed

page 307

1304 Local variables must be declared at top of function page 308
1305 Local functions not supported page 308
1306 Declaration type can only be used globally: '<identifier>' page 309
1307 Variables must be declared before array declarations: '<identifier>' page 310
1308 Global variable declaration cannot be declared in library file: '<identifier>'

I/O Declaration cannot be declared in library file: '<identifier>'

page 311

1309 Compiler Directive must be set before all global variable declarations
#DEFAULT_NONVOLATILE Compiler Directive already set
#DEFAULT_VOLATILE Compiler Directive already set

page 312

1310 Compiler directive cannot be in function scope page 313
1311 Undefined Wait Label: '<identifier>'

Missing, invalid or already defined Wait label: '<identifier>'
page 314

1312 Array boundary exceeded maximum size of ‘num_bytes’ bytes page 315
1313 Minimum array size invalid page 315
1314 Minimum array size is not allowed for this datatype: '<identifier>'

Minimum array size for this datatype has already been declared: '<identifier>
page 316

Assignment
Errors

1400 Illegal Assignment page 317
1401 Variable cannot be used for assignment: '<identifier>' page 318
1402 Variable can only be used for assignment: '<identifier>' page 318

Function
Argument Errors

1500 Argument <arg_num> cannot be passed by reference page 319
1501 Argument <arg_num> cannot be passed by value page 320
1502 Function contains incomplete number of arguments

Function call contains an unmatched number of arguments
page 321

1503 Input or Output signal expected: '<identifier>' page 321
1504 Incomplete number of format string arguments

Format string contains an unmatched number of arguments
Argument <arg_num> is missing or invalid.
Argument <arg_num> is missing or invalid. <decl_type> expected

page 322

1505 Format string contains invalid format specifier page 323
1506 0, 1 or 2 constant expected for argument 1 page 324
1507 Argument <arg_num>: Missing or invalid array page 324
1508 I/O variable cannot be passed to read file functions: '<identifier>' page 325
Language Reference Guide - DOC. 5797G SIMPL+® 287

Software Crestron SIMPL+ ®

CATEGORY NUMBER MESSAGE TEXT PAGE
Construct Errors 1600 'Function Main' cannot contain function parameters

'Function Main' cannot return a value
page 326

1601 Duplicate CASE Statement
Constant expected: '<identifier>'

page 326

1602 Switch statement contains 'default' without 'case' labels page 327
1603 #CATEGORY does not exist: '<categorgy_number>'

Defaulting to Category Type, ""32"" (Miscellaneous).
page 328

1604 'EVENT' already has a body page 329
1605 Function can only be contained within an event page 329
1606 Statement must be contained within a loop statement page 330
1607 GetLastModifiedArrayIndex may return an ambiguous signal index page 331
1608 Missing library file name page 331

File Errors 1700 End of file reached page 332
1701 Error writing header file: '<file_name>'

Error writing file: '<file_name>'
Error writing library file
Error writing output file
Error creating compiler makefile: '<file_name>'
Error opening compiler source makefile: '<file_name>'
Error opening source file: '<file_name>'

page 332

1702 Error extracting library, '<file_name>', from archive: '<archive_file>' page 332
Complier
Warnings

1800 'Return' statement will only terminate current Wait statement's function
scope

page 333

1801 'TerminateEvent' statement will only terminate current Wait statement's
function scope

page 333

1802 #CATEGORY_NAME defined more than once. Using: #CATEGORY_NAME
"<number>"

page 334

1803 Possible data loss: LONG_INTEGER to INTEGER assignment page 335
288 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Syntax Errors (Compiler Errors 1000 to 1013)

Compiler Error 1000

syntax error: '<identifier>' already defined
The specified identifier was declared more than once. A variable can only be
declared once within it’s function scope. The same identifier cannot be used for more
than one declaration type.

Scope refers to the level at which an Event, user-defined function or statement
resides. Having a global scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it resides in.

The following are examples of this error:
INTEGER i;

INTEGER i; // error – i is already defined as an INTEGER

STRING i[100]; // error – i is already defined as an INTEGER

STRUCTURE myStruct

{

 INTEGER i; // ok – i is a member variable of myStruct
}

INTEGER_FUNCTION MyFunc(INTEGER x, INTEGER y)
{

 INTEGER i; // ok

 INTEGER i; // error - i is already defined as a local
INTEGER

 INTEGER x; // error – x is already defined as a function
 // parameter, which makes it a local

 // variable in this function

}

FUNCTION MyFunc() // error – MyFunc() is already defined

 // as an INTEGER_FUNCTION
{

}

FUNCTION AnotherFunc(INTEGER x, INTEGER y) // ok – x and y
are
 // local to this function

{
}

NOTE: Make sure the identifier has not been declared as another declaration type,
user-defined function, or structure definition.
Language Reference Guide - DOC. 5797G SIMPL+® 289

Software Crestron SIMPL+ ®
Compiler Error 1001

syntax error: Undefined variable: '<identifier>'
Undefined function ‘<identifier>’
The specified identifier was not declared.

All variables and user-defined functions must be declared before they are used. They
must be declared either globally or within the same function scope. Variables from
one program are not accessible from another program.

Scope refers to the level at which an Event, user-defined function or statement
resides. Having a global scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it resides in.

• Make sure the identifier is spelled correctly

• Make sure the identifier has not been declared locally within another function

• When using structures, make sure the proper ‘dot’ notation is being used when
accessing the structure’s variables (see example below)

The following are examples of this error:

INTEGER i;

STRUCTURE myStruct

{

 INTEGER structMember;

 INTEGER structArrMember[10];

}

myStruct struct;

myStruct structArr[10];

FUNCTION MyFunc(INTEGER x)

{

 INTEGER k;

 i = 1; // ok

 k = 3; // ok

 x = 4; // ok

 struct.structMember = 5; // ok – proper ‘dot’
notation

 struct.structMember[1] = 6; // ok – proper ‘dot’
notation

 structArr[1].structMember = 7; // ok – proper ‘dot’
notation
290 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
 structArr[1].structArrMember[2] = 8; // ok – proper ‘dot’
notation

 j = 2; // error – j is not declared

 structMember = 10; // error – improper ‘dot’ notation

 structMember[1] = 11; // error – structMember is not an
array

 k = AnotherFunc(); // error – AnotherFunc() was not

 // declared previously

}

INTEGER_FUNCTION AnotherFunc()

{

 k = 5; // error – k is a local variable of MyFunc()

 x = 6; // error – x is a local variable of MyFunc()

 Call MyFunc(); // ok

 Call MyFunk(); // error – spelling error

 return (1);

}

Language Reference Guide - DOC. 5797G SIMPL+® 291

Software Crestron SIMPL+ ®
Compiler Error 1002

syntax error: Missing '<token>'
A language element was expected and not found. The compiler expects certain
language elements to appear before or after other elements. If any other language
element is used, the compiler cannot understand the statement. Examples are missing
parenthesis after a function call, missing semicolons after a statement and missing
braces when defining functions.

A token is a language element such as a keyword or operator. Anything that is not
whitespace (i.e.: spaces, tabs, line feeds and comments) is a token.

Examine the last uncommented non-blank line or statement within the program. If a
token was required in a previous statement and was not encountered, the compiler
will continue onto the next line and mark the first token of the new statement as the
error.

The following are examples of this error:
STRUCTURE MyStruct
{
 INTEGER x;
 STRING s[100];
}

MyStruct struct; // error – missing ‘;’ from preceding
 // structure definition

INTEGER_FUNCTION MyFunc(INTEGER) // error – argument
variable
 // not specified

 INTEGER x; // error – ‘{’ missing before INTEGER

 Print “abc”; // error – missing parenthesis
 // should be Print (“abc”);

 // printing…
 Print “def” // error – error message will occur on
 // next statement

 // more printing…
 Print “ghi”; // error – missing ‘;’from preceding
Print
 // statement

 x = ((1+2) + 3; // error – unmatched set of parentheses

 x = atoi(“abc”, 1); // error – atoi() does not take 2
arguments

 if (x = 4)
 return 5; // error – should be return (5);

 return (6); // ok
}

292 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1003

syntax error: Incorrect type '<decl_type>', expected type(s):
'<decl_type1[,decl_type2] [,decl_typen]>' Incorrect type,
expected type(s): '<decl_type1[,decl_type2][,decl_typen]>'
A specific variable or type was expected and not found. Examples are variables of
one type being used in place of another, and incorrect variable types within function
arguments.

The following are examples of this error:
STRING_FUNCTION MyFunc(INTEGER x)
{

 INTEGER y;

 x = getc(y); // error – y is not of type STRING

 x = MyFunc(1); // error – x cannot accept the resulting
string

 // returned from MyFunc()

}

Compiler Error 1004

syntax error: Unmatched symbol: '<identifier>'
Some language constructs are composed of more than one keyword. In these cases,
each keyword may require statements before and after it is used.

For example, the Switch statement uses the following keywords, Switch, Case, and
Default. If the keyword, Case, is encountered before or outside of switch statement,
this error will result.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x)

{

 x = 1;

 while (1)

 {
 x = x + 1;

 } until (x > 5); // error – ‘until’ is not part of the
 // ‘while’ construct

 else // error – no preceding ‘if’ statement
 {

 x = 0;

 }

}

Language Reference Guide - DOC. 5797G SIMPL+® 293

Software Crestron SIMPL+ ®
Compiler Error 1005

syntax error: Unexpected symbol in compiler directive:
'<identifier>'

An invalid identifier is following a compiler directive.

The following are examples of this error:
#DEFINE_CONSTANT MyIntConst 100 // ok

#DEFINE_CONSTANT “MyIntConst” 100 // error – MyIntConst
should not

 // be in quotes – this

 // will be evaluated as
 // a literal string

Compiler Error 1006

syntax error: Invalid #DEFINE_CONSTANT value:
'<identifier>'

The value for a #DEFINE_CONSTANT compiler directive must be either a literal
string or an integer value. Expressions, variables, functions and events cannot be
specified as the compiler directive’s value.

The following are examples of this error:
INTEGER x;

#DEFINE_CONSTANT MyIntConst 100 // ok
#DEFINE_CONSTANT MyStrConst “abc” // ok

#DEFINE_CONSTANT MyExprConst (1+2) // error – expressions
are

 // not allowed

#DEFINE_CONSTANT MyVarConst x // error –
substitutions are

 // not allowed

#DEFINE_CONSTANT MyExprConst (x+1) // error – macros
are not
 // supported

#DEFINE_CONSTANT MyFuncConst myFunc // error
#DEFINE_CONSTANT MyFuncConst getc // error
294 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1007

syntax error: Missing array index: '<identifier>'
A variable declared as an array is being used within an expression without the array
index being specified. For two-dimensional arrays, both indices must be specified.
When passing entire arrays as function arguments, no index is needed.

The following are examples of this error:
FUNCTION MyFunc()

{
 INTEGER i, arr[10], arr2[10][20];

 STRING str[100], str2[100][50];

 i = arr[5]; // ok

 i = arr2[5][10]; // ok

 arr[5] = arr2[5][10]; // ok
 arr2[5][10] = 5; // ok

 i = arr; // error – no index specified
 arr = 5; // error – no index specified

 i = arr2[5]; // error – 2nd index not
specified

 str2[5] = “a”; // ok
 str[5] = “a”; // error – ‘str’ is not an array

}

Language Reference Guide - DOC. 5797G SIMPL+® 295

Software Crestron SIMPL+ ®
Compiler Error 1008

syntax error: Invalid integer argument or undefined variable:
'<identifier>'

The construct being used requires either an integer value or variable passed as a
function argument.

• Make sure the variable has been declared

The following are examples of this error:
STRUCTURE MyStruct
{

 INTEGER x;

 STRING s[100];
}

MyStruct struct;

Function MyFunc()

{
 INTEGER i;

 STRING s[100];

 for (i = 1 to 10) // ok

 {

 for (j = 1 to 5) // error – ‘j’ has not been declared
 {

 x = j; // error – should be struct.x = j;
 }

 for (s = “a” to “z”) // error – strings are not allowed

 {
 }

 }

}

296 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1009

syntax error: Missing structure member: '<identifier>'
 Structure does not contain member: '<identifier>'
Variables contained within structures are required when using structures within an
expression or statement. When using structures, the ‘dot’ notation is required to
specify a structure’s variable.

The notation is as follows: <structure_name>.<member_variable>
Structure arrays are as follows: <structure_name>[index].<member_variable>

The following are examples of this error:
STRUCTURE MyStruct
{

 INTEGER x;

 INTEGER x2[10];
}

Function MyFunc(INTEGER x)
{

 INTEGER i;

 MyStruct struct;
 MyStruct structArr[10];

 i = struct.x; // ok
 struct.x = 5; // ok

 struct.x2[2] = 5; // ok

 structArr[1].x2[2] = 5; // ok

 Call MyFunc(i); // ok

 Call MyFunc(struct.x); // ok
 Call MyFunc(structArr[1].x); // ok

 Call MyFunc(struct.x2[1]); // ok

 i = struct; // error – structure variable not
specified
 struct = i; // error – structure variable not
specified
 Call MyFunc(struct); // error – structure variable not
specified

 i = struct.z; // error – structure variable does
not exist

 struct.z = 5; // error – structure variable does
not exist

}

Language Reference Guide - DOC. 5797G SIMPL+® 297

Software Crestron SIMPL+ ®
Compiler Error 1010

syntax error: Symbol Name contains illegal character: ';'
The compiler directive, #SYMBOL_NAME, cannot contain a semicolon as part of
the symbol name.

The following are examples of this error:
#SYMBOL_NAME “MySymbol” // ok

#SYMBOL_NAME “My Symbol” // ok

#SYMBOL_NAME “MySymbol;YourSymbol” // error

Compiler Error 1011

syntax error: Missing return value
The Return statement requires a valid value or expression when used inside of
functions that return a value (INTEGER_FUNCTION, STRING_FUNCTION, etc.).
The Return statement is available for functions that don’t return a value
(FUNCTION), but do not allow values to be returned.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x)

{
 if (x=1)

 return; // ok – MyFunc() does not return a value

 return (5); // error – MyFunc is declared as FUNCTION and

 // cannot return a value

}

INTEGER_FUNCTION AnotherFunc(INTEGER x)

{
 if (x=1)

 return; // error – MyFunc is declared as an
INTEGER_FUNCTION

 // and must return a value

 else if (x=2)
 return (5); // ok

 else if (x=3)
 return (); // error – no value or expression is given

 return (x); // ok
}

298 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1012

syntax error: Unterminated string constant
A literal string was used and was not contained within quotes. If a quotation
character is needed within a literal string, a backslash should be placed before the
quotation character (i.e.: \). This will indicate to the compiler that the quotation
character is not the terminating quote for the literal string.

The following are examples of this error:
FUNCTION MyFunc()

{

 Print("%s", "abc\""); // ok

 Print("%s", "abc\"); // error - \" is not a closing quote

}

Compiler Error 1013

syntax error: Source code does not evaluate to anything
A statement must perform an action in order to be valid. If no action is specified, the
statement will not be useful to the program.

The following are examples of this error:

FUNCTION MyFunc()

{

 INTTEGER x;

 STRING str[100];

 x = 5; // ok

 str = “abc”; // ok

 x; // error

 str; // error

}

Language Reference Guide - DOC. 5797G SIMPL+® 299

Software Crestron SIMPL+ ®
Fatal Errors (Compiler Errors 1100 to 1101)

Compiler Error 1100

fatal error: Statement outside of function scope
User-defined functions, Events, and compiler directives can only be defined at a
global level.

Scope refers to the level at which an Event, user-defined function or statement
resides. Having a global scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it resides in.

 Variables can have either a global or local scope.

The following are examples of this error:
INTEGER i;
STRING str[100];

#DEFINE_CONSTANT myConst 1 // ok
#DEFINE_CONSTANT myConst 2; // error – semicolon is not
needed

i = 5; // error – variables can only be used within a

 // function or event
Call MyFunc(); // error – functions can only be called from

 // another function or event

; // error – a semicolon is valid statement (which

 // does nothing), and is not contained

 // within a function or event

{ // error – braces only signify a group of

 // statements within a function or
 // construct (i.e.: if-else, while, etc)

 INTEGER x;

 INTEGER y;
}

Print(“outside of everything”); // error – statement is
 // not contained within

 // a function or event

FUNCTION MyFunc() // ok
{

}

300 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Function Main() // ok – Function Main gets called
automatically

 // at the start of the program
{

 i = 5; // ok

 str = “”; // ok

 Call MyFunc(); // ok

}

Compiler Error 1101

fatal error: Abort - Error count exceeded <max_errors>
When compiling, if the error count is too large, the compiler will terminate the
compile process prematurely. This can not only be a tremendous time saver, but also
help reduce the aggravation and stress levels of the programmer.

Expression Error (Compiler Errors 1200 to 1201)

Compiler Error 1200

expression error: Invalid numeric expression: '<expression>'
 Invalid string expression
 Invalid expression: '<expression>'
Expressions can be calculations, comparisons, or the validity of a value from a string
or numeric variable or value. All expressions require that all variables and values
within the equation are of the same type. For example, you cannot add or compare
an integer and a string together. The result of a comparison (i.e.: abc = def) is always
a numeric value and will be treated as a numeric expression.

The following are examples of this error:
INTEGER x, y;
STRING str[100];

INTEGER_FUNCTION myFunc(INTEGER i)
{

 x = (1 + 2); // ok

 if (x > y) // ok

 {

 if (i) // ok

 {
 if (str = “abc”) // ok

 {

 while (1) // ok
 {
Language Reference Guide - DOC. 5797G SIMPL+® 301

Software Crestron SIMPL+ ®
 x = x + y + myFunc(1); // ok
 break;

 }

 }
 }

 }

 return (1);
}

INTEGER_FUNCTION AnotherFunc(INTEGER i)
{

 x = (1 + str); // error – cannot add an integer

 // and string

 if (x > “abc”) // error – cannot compare an
integer

 // and string

 {
 if (str) // error – cannot check the
validity
 // of a string

 {

 if (str = MyFunc(1)) // error – cannot add strings
 // and integers together

 {

 while (str < “abc”) // ok
 {

 x = (x +); // error – incomplete expression

 break;
 }

 }

 }
 }

 return (1);
}

302 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1201

expression error: Invalid \\x sequence
 Invalid \\x sequence: '<expression>'

A hexadecimal sequence within a literal string contained an invalid format.
Characters represented by a hexadecimal number must follow the format: \xXX,
where ‘\x’ signifies that a hexadecimal sequence is to follow and XX is the 2 digit
hexadecimal value.

The following are examples of this error:
Function myFunc()

{

 STRING str[100];

 MakeString(str, “Sending commands \xFF”); // ok

 MakeString(str, “Sending commands \x41\x1A\xFF”); // ok

 MakeString(str, “Sending cmd \x4”); // error – 2 digits
required

 MakeString(str, “Sending cmd \x”); // error – hex code
expected

 MakeString(str, “Sending cmd \xZZ”); // error – invalid
hex code

 MakeString(str, “Sending cmd \xZZ”); // error – invalid
hex code

}

Language Reference Guide - DOC. 5797G SIMPL+® 303

Software Crestron SIMPL+ ®
Declaration Errors (Compiler Errors 1300 to 1312)

Compiler Error 1300

declaration error: Array size missing
 Array size invalid
STRING, STRING_INPUT and BUFFER_INPUT variables require a valid length.
A length is specified by number enclosed within brackets. Arrays for these datatypes
are specified by the first set of brackets containing the number of strings and the
second set of brackets containing the total length for each string. Two-dimensional
arrays are not allowed for these datatypes.

In a function’s argument list, since all strings are passed by reference, no array size
is necessary. A string array is indicated by an empty set of brackets. See example
below.

The following are examples of this error:
#DEFINE_CONSTANT ARR_SIZE 100

STRING str[100]; // ok – str has a length of 100
STRING_INPUT strIn[ARR_SIZE]; // ok – strIn has a length of
100
BUFFER_INPUT bufIn[ARR_SIZE]; // ok – bufIn has a length of
100

STRING strArr[50][100]; // ok – 51 strings of length 100
STRING_INPUT strIn[50][100]; // ok - 51 strings of length
100
BUFFER_INPUT bufIn[50][100]; // ok – 51 strings of length
100

STRING_OUTPUT strOut; // ok – STRING_OUTPUTs do not
 // require a length
STRING_OUTPUT strOutArr[10]; // ok – array of 10
STRING_OUTPUTs

STRING str2; // error – no length specified
STRING_INPUT strIn; // error – no length specified
BUFFER_INPUT bufIn; // error – no length specified
STRING_OUTPUT strOutArr[10][20]; // error – 2-D arrays not
supported
STRING str[x]; // error – variables are not
allowed
STRING str[myFunc()]; // error – function calls are
 // not allowed

FUNCTION myFunc(STRING sArg, // ok – strings are passed
by
 STRING sArgArr[]) // reference. sArg is a
 // string and sArgArr is a
 // string array
{

304 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
}

FUNCTION myFunc2(STRING sArg[10], // error – size is not
allowed
 STRING sArgArr[][]) // error – 2-D strings not
 // supported
{
}

Compiler Error 1301

declaration error: Invalid array index
An index is required when accessing any element of an array. Two dimensional
arrays require both indices of the array to be specified. This index must be a valid
numeric expression.

All arrays are passed to functions by reference, so specifying an index in this case is
not allowed.

The following are examples of this error:
INTEGER xArr[10], x2dArr[10][20]; // ok

STRING str[100], strArr[50][100]; // ok

STRING_INPUT strIn[100]; // ok
STRING_OUTPUT strOut; // ok

STRING str; // error – no length specified
STRING_INPUT strIn; // error – no length specified

BUFFER_INPUT bufIn; // error – no length specified

STRING_OUTPUT strOutArr[10][20]; // error – 2-D arrays not
supported

STRING str[x]; // error – variables are not
allowed

STRING str[myFunc()]; // error – function calls are
 // not allowed

INTEGER_FUNCTION MyIntFunc(INTEGER x[], INTEGER xArr[][])
{

 xArr[1] = 5; // ok

 xArr[1+2] = xArr[3+4]; // ok
 xArr[1+xArr[2]] = xArr[xArr[3]]; // ok

 xArr[MyIntFunc(xArr,x2dArr)] = 6; // ok

 x2dArr[1][2] = 6; // ok

 x2dArr[xArr[1]][xArr[2]] = x2dArr[xArr[5]][xArr[6]]; // ok

 Call MyFunc(xArr, x2dArr); // ok

 xArr = 5; // error – no index specified

 xArr[] = 0; // error – no index specified
 xArr[str] = 6; // error - s is a STRING

 xArr[5][6] = 7; // error – xArr is not a 2D array
Language Reference Guide - DOC. 5797G SIMPL+® 305

Software Crestron SIMPL+ ®
 xArr = xArr; // error – cannot copy arrays
 xArr = x2dArr[1]; // error – cannot copy arrays

 x2dArr[1] = xArr; // error – cannot copy arrays

 Call MyIntFunc(xArr[5], x2dArr); // error – cannot pass
index

 // arrays are passed
 // by reference

}

FUNCTION MyStrFunc(STRING s, STRING s[]) // ok

{

 STRING sLocal[100];

 str = “abc”; // ok

 strArr[5] = “def”; // ok
 strIn = s; // ok

 strOut = s; // ok

 sInArr[5] = “abc”; // ok
 sOutArr[5] = “abc”; // ok

 Call MyStrFunc(str, strArr); // ok

 str[1] = “a”; // error – s is a string, not an array

 sLocal = str[1]; // error – individual characters within
 // a string can only be accessed

 // with the function, Byte()

}

Compiler Error 1302

declaration error: Variable name, ‘<identifier>’, exceeds
maximum length of <max> characters

Variable names have a maximum length of 120 characters.
306 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1303

declaration error: Declaration type not allowed within
structure: '<identifier>'

Structure cannot contain String Arrays or
Structure variables: '<identifier>'

Structure definitions not allowed within
other structures Local Structure
declarations are not allowed

Structure datatypes can only be defined globally. Variables of a defined structure
datatype may be declared both globally and locally and passed as function arguments.
INTEGER, LONG_INTEGER, SIGNED_INTEGER, SIGNED_LONG_INTEGER
and STRING are the only SIMPL+ datatypes allowed to be used as structure member
fields. INTEGER and LONG_INTEGER can include 1 and 2 dimensional arrays.
String arrays are not permitted.

The following are examples of this error:
STRUCTURE MyStruct // ok
{
 INTEGER i, i1[10], l2[10][20]; // ok
 SIGNED_INTEGER si, si1[10], si2[10][20]; // ok
 LONG_INTEGER l, l1[10], l2[10][20]; // ok
 SIGNED_LONG_INTEGER sl, sl1[10], sl2[10][20]; // ok
 STRING s[100]; // ok

 STRING sArr[10]; // error – string arrays are not allowed
 // within structures

 DIGITAL_INPUT di; // error – declaration type not allowed
 DIGITAL_OUTPUT do; // error – declaration type not allowed
 ANALOG_INPUT ai; // error – declaration type not allowed
 ANALOG_INPUT ao; // error – declaration type not allowed
 STRING_INPUT si; // error – declaration type not allowed
 BUFFER_INPUT bi; // error – declaration type not allowed
 STRING_OUTPUT so; // error – declaration type not allowed

 STRUCTURE locStruct // error – declaration type not allowed
 {
 INTEGER x;
 }

 MyStruct ptr; // error – declaration type not allowed
}

FUNCTION MyFunc()
{
 STRUCTURE MyStruct // error – local structures are not
supported
 {
 INTEGER i, i1[10], l2[10][20];
 }
}

Language Reference Guide - DOC. 5797G SIMPL+® 307

Software Crestron SIMPL+ ®
Compiler Error 1304

declaration error: Local variables must be declared at top of
function

All local variables within a function block must be declared before any statements are
encountered. Local variables are not allowed to be declared within a block of
statements such as inside an if-else or while loop.

The following are examples of this error:
FUNCTION MyFunc(INTEGER arg1, STRING arg2) // ok
{
 INTEGER i; // ok
 STRING str[100]; // ok

 Print(“Inside MyFunc!”);

 INTEGER j; // error

 if (i > 1)
 {
 INTEGER k; // error – if-statement block cannot
 contain local variables
 }
}

Compiler Error 1305

declaration error: Local functions not supported
A function cannot be defined within another function definition. All function
definitions must be defined with a global scope inside the module.

Scope refers to the level at which an Event, user-defined function or statement
resides. Having a global scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it resides in.

The following are examples of this error:

FUNCTION MyFunc() // ok – MyFunc is global
{
 FUNCTION MyLocalFunc() // error – MyLocalFunc is local to
MyFunc
 {
 }
}

308 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1306

declaration error: Declaration type can only be used globally:
'<identifier>'

I/O declarations must be defined globally; they cannot be declared as local variables
inside of a function or library file.

The following are examples of this error:
INTEGER i; // ok
STRING str[100]; // ok

DIGITAL_INPUT di; // ok
DIGITAL_OUTPUT do; // ok
ANALOG_INPUT ai; // ok
ANALOG_OUTPUT ao; // ok
STRING_INPUT si[100]; // ok
STRING_OUTPUT so; // ok
BUFFER_INPUT bi[100]; // ok

FUNCTION MyFunc()
{
 INTEGER i; // ok – not an I/O declaration
 STRING str[100]; // ok – not an I/O declaration

 DIGITAL_INPUT di; // error
 DIGITAL_OUTPUT do; // error
 ANALOG_INPUT ai; // error
 ANALOG_OUTPUT ao; // error
 STRING_INPUT si[100]; // error
 STRING_OUTPUT so; // error
 BUFFER_INPUT bi[100]; // error
}

Language Reference Guide - DOC. 5797G SIMPL+® 309

Software Crestron SIMPL+ ®
Compiler Error 1307

declaration error: Variables must be declared before array
declarations: '<identifier>'

I/O declarations must be declared in a specific order. All arrays of an I/O declaration
type (i.e.: DIGITAL_INPUT) must be declared after any variables of the same type.

The following are examples of this error:
DIGITAL_INPUT di1, di2; // ok

DIGITAL_INPUT di3; // ok

ANALOG_INPUT ai1 // ok

DIGITAL_OUTPUT do1; // ok

ANALOG_INPUT aiArr1[10]; // ok

DIGITAL_INPUT di4; // ok – no DIGITAL_INPUT array exists
yet
DIGITAL_INPUT diArr1[10]; // ok

DIGITAL_OUTPUT do2; // ok

ANALOG_INPUT aiArr2[20]; // ok – multiple arrays are allowed

DIGITAL_INPUT di5; // error – cannot define after diArr1

ANALOG_INPUT ai2; // error – cannot define after aiArr2
310 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1308

declaration error: Global variable declaration cannot be
declared in library file: '<identifier>'

I/O Declaration cannot be declared in library
file: '<identifier>'

I/O declarations and global variables can only be defined in a SIMPL+ module (.usp
file). Libraries files (.usl files) are files that only contain functions. Local functions
variables, function arguments and function that return values are permitted within
library files.

The following are examples of this error:
//
//////

// MyLib.usl

INTEGER x; // error – x is global

STRING str[100]; // error – str is global

DIGITAL_INPUT di; // error – di is global

FUNCTION MyFunc()

{
 INTEGER i, j; // ok – i and j are local

 STRING str[100]; // ok – str is local

}

INTEGER_FUNCTION MyIntFunc(INTEGER x) // ok – x is local

{
 INTEGER i, j; // ok – i and j are local

 STRING str[100]; // ok – str is local

 return (x);

}

STRING_FUNCTION MyStFunc(STRING s) // ok – s is local

{

 INTEGER i, j; // ok – i and j are local
 STRING str[100]; // ok – str is local

 return (str);
}

Language Reference Guide - DOC. 5797G SIMPL+® 311

Software Crestron SIMPL+ ®
Compiler Error 1309

declaration error: Compiler Directive must be set before all
global variable declarations

#DEFAULT_NONVOLATILE Compiler
Directive already set

#DEFAULT_VOLATILE Compiler
Directive already set

The compiler directives, #DEFAULT_VOLATILE and
#DEFAULT_NONVOLATILE, must be used before any global variables are
encountered within the SIMPL+ module. A module cannot contain more than one of
these directives.

The following are examples of this error:
//
//////

// Example 1

#DEFAULT_VOLATILE // ok – compiler directive exists before

 // all global variables

INTEGER x;

STRING str[100];
DIGITAL_INPUT di;

FUNCTION MyFunc()
{

}

//
//////
// Example 2

INTEGER x;
STRING str[100];

DIGITAL_INPUT di;

#DEFAULT_VOLATILE // error – global variables have already
been
 // declared within this module

FUNCTION MyFunc()
{

}

//
//////

// Example 3

#DEFAULT_VOLATILE // ok – compiler directive exists before
312 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
 // all global variables
INTEGER x;

STRING str[100];

DIGITAL_INPUT di;

#DEFAULT_NONVOLATILE // error – #DEFAULT_VOLATILE has already

 // been set

INTEGER y;

#DEFAULT_NONVOLATILE // error – #DEFAULT_VOLATILE has already

 // been set
INTEGER z;

FUNCTION MyFunc()
{

}

Compiler Error 1310

declaration error: Compiler directive cannot be in function
scope

Compiler directives cannot be used locally within functions. They can only be used
at a global level and the directive applies to the entire SIMPL+ module.

Scope refers to the level at which an Event, user-defined function or statement
resides. Having a global scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it resides in.
The following are examples of this error:

#DEFINE_CONSTANT MyConst 100 // ok – used globally

#USER_LIBRARY “MyUserLib” // ok – used globally

FUNCTION MyFunc()

{
 #DEFINE_CONSTANT AnotherConst 100 // error – constants
cannot
 // be used locally

 #USER_LIBRARY “AnotherUserLib” // error – libraries
cannot

 // be included locally
}

Language Reference Guide - DOC. 5797G SIMPL+® 313

Software Crestron SIMPL+ ®
Compiler Error 1311

declaration error: Undefined Wait Label: '<identifier>'
Missing, invalid or already defined Wait
label: '<identifier>'

Wait Statements can be given a label as an optional argument. This label must be a
unique name and more than one wait statement cannot share the same label name.
The label name can then be used in the Pause, Cancel and Resume wait functions. All
labels must already be declared in within a wait statement before any Pause, Cancel
or Resume wait statement can reference it.

The following are examples of this error:
FUNCTION MyFunc()
{

 CancelAllWaits(); // ok

 CancelWait(MyWaitLabel); // error – MyWaitLabel has

 // not been declared yet

 Wait(500) // ok – Label is not required

 {

 }

 Wait(500, MyWaitLabel) // ok – MyWaitLabel is unique

 {
 }

 Wait(500, MyWaitLabel) // error – MyWaitLabel has
already

 // been used
 {

 }

 CancelWait(AnotherWaitLabel); // error – AnotherWaitLabel
has
 // not been declared yet

 Wait(500, AnotherWaitLabel) // ok – AnotherWaitLabel is
unique

 {
 }

 CancelWait(AnotherWaitLabel); // ok
 PauseWait(MyWaitLabel); // ok

 ResumeWait(MyFunc); // error – MyFunc is not a
valid
 // wait label

 ResumeWait(someLabel); // error – someLabel does
not exist

}

314 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1312

declaration error: Array boundary exceeded maximum size
of ‘num_bytes’ bytes

The maximum number of indices for an array is 65535.

The following are examples of this error:
FUNCTION MyFunc()

{

 INTEGER int[100], intArr[100][100]; // ok
 STRING str[100], strArr[100][100]; // ok

 INTEGER int[100000]; // error
 INTEGER intArr[100000][100]; // error

 INTEGER intArr[100][100000]; // error

 STRING str[100000]; // error

 STRING strArr[100000][100]; // error

 STRING strArr[100][100000]; // error
}

Compiler Error 1313

declaration error: Minimum array size invalid
The minimum array size cannot exceed the total size of the array. The minimum
array size must be between 1 and the total size of the array.

The following are examples of this error:
DIGITAL_INPUT digIn1[10]; // ok

DIGITAL_INPUT digIn2[10,5]; // ok – minimum size is 5

ANALOG_INPUT anlgIn3[10,0]; // error – minimum size must be
 // greater than 0

STRING_INPUT strIn4[10,20]; // error – minimum size of 20
exceeds

 // total array size of 10
Language Reference Guide - DOC. 5797G SIMPL+® 315

Software Crestron SIMPL+ ®
Compiler Error 1314

declaration error: Minimum array size is not allowed for this
datatype: '<identifier>'

Minimum array size for this datatype
has already been declared: '<identifier>'

Minimum array sizes are only applicable to Input and Output datatypes (i.e.:
DIGITAL_INPUT, ANALOG_OUTPUT, STRING_INPUT, etc.). A variable of
another datatype was found trying to define a minimum array size. Only one array
for each Input or Output datatype is allowed to be declared with a minimum array
size.

The following are examples of this error:
DIGITAL_INPUT digIn1[10]; // ok

DIGITAL_INPUT digIn2[10,5]; // ok – minimum size is 5

DIGITAL_INPUT digIn3[20,10]; // error – the DIGITAL_INPUT
array
 // variable, digIn2, has already
 // been declared with a minimum

 // array size

ANALOG_INPUT anlgIn1[10]; // ok

ANALOG_INPUT anlgIn2[10,5]; // ok – no other ANALOG_INPUT has
been

 // declared with a minimum
array size

INTEGER x[10]; // ok

INTEGER y[10,5]; // error – INTEGER is not an Input or

 // Output datatype
316 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Assignment Errors (Compiler Errors 1400 to 1402)

Compiler Error 1400

assignment error: Illegal Assignment
Assignments in SIMPL+ require that the value being assigned to a variable must
equate to the same type as that variable. Integer variables can only be assigned
integer values and string variables can only be assigned a string value.

• If a complex assignment is being made, make sure that all parenthesis are matched.
In other words, all opening parenthesis must have a matching closing parenthesis.

• When comparing 2 strings (‘=’, ‘<’, ‘>=’, etc.), the resulting value is an integer

• Input variables (DIGITAL_INPUT, ANALOG_INPUT, STRING_INPUT and
BUFFER_INPUT) cannot be assigned a value.

The following are examples of this error:
INTEGER x, y;
STRING str[100], str2[100];
DIGITAL_INPUT digIn;
DIGITAL_OUTPUT digOut;
ANALOG_OUTPUT anlgOut;

FUNCTION MyFunc()
{
 str = “abc”; // ok
 str = “abc” + “def”; // ok
 str = str2; // ok

 x = 1; // ok
 x = digOut; // ok
 x = (str = str2); // ok
 x = 5 * (1 + (str > str2)); // ok

 digOut = x; // ok
 digOut = 5; // ok
 digOut = anlgIn; // ok – both are integer types

 x = str; // error – str does not equate to
 // an integer
 // atoi() should be used

 digIn = 1; // error - digIn is an input variable

 str = 5; // error – 5 is an integer
 // MakeString() should be used

 str = str2 = “abc”; // error = str2 = “abc” is an
equality
 // test, not an assignment
}

Language Reference Guide - DOC. 5797G SIMPL+® 317

Software Crestron SIMPL+ ®
Compiler Error 1401

assignment error: Variable cannot be used for assignment:
'<identifier>'

Function arguments that have been declared as ReadOnlyByRef can only have their
values read; values cannot be assigned to them.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x, ReadOnlyByRef INTEGER y)

{

 x = 5; // ok

 x = y; // ok – the value of y can be read

 y = 6; // error – y is read-only

}

Compiler Error 1402

assignment error: Variable can only be used for assignment:
'<identifier>'

STRING_OUTPUT variables can only have their values read. Once assigned a
value, that value is immediately acted upon by the control system, and the value is
assumed to be unknown thereafter.

The following are examples of this error:
STRING_OUTPUT sOut;

STRING str[100];

FUNCTION MyFunc()

{

 str = “abc”; // ok

 sOut = str; // ok – sOut can be assigned a value

 sOut = “abc”; // ok – sOut can be assigned a value

 str = sOut; // error – the value of sOut is lost

 Print(“str = %s”, str); // ok – STRINGs can be read and
written

 Print(“sOut = %s”, sOut); // error – the value of sOut is
unknown

}

318 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Function Argument Errors (Compiler Errors 1500 to 1508)

Compiler Error 1500

function argument error: Argument <arg_num> cannot be
passed by reference

A variable was being passed that can either only have a value assigned to it, or it’s
value be copied into another variable or used within an expression. An example of
this is trying to pass a STRING_INPUT variable as a function argument; the
STRING_INPUT must first be copied into a STRING variable and then passed.

Pass by Reference – The function will act directly on the variable that was passed as
the argument. Any changes to the variable within the called function the will be
reflected within the calling function.

Pass by Value – The function creates a local copy of the source variable. Any
changes to this local copy are not reflected in the source variable that was originally
passed to the function. The source variable will still retains its original value from
before the function was called..
The following are examples of this error:

INTEGER i;
STRING str[100];
STRING_INPUT strIn[100];
STRING_OUTPUT strOut;
DIGITAL_INPUT di;

FUNCTION MyFunc(STRING s)
{
 str = strIn;
 Call MyFunc(str); // ok – the previous statement copied
 // ‘strIn’ into ‘str’

 Call MyFunc(“abc”); // ok

 Call MyFunc(strIn); // error – strIn is a STRING_INPUT
and
 // cannot be passed by reference

 Call MyFunc(strOut); // error – strIn is a STRING_OUTPUT
and
 // cannot be passed by reference
}

FUNCTION MyFunc2(ByRef STRING s) // error – STRINGs cannot be
 // passed by reference
{
 Call MyFunc2(str); // error – STRINGs cannot be
 // passed by reference
}

FUNCTION AnotherFunc(ByRef INTEGER x)
{

Language Reference Guide - DOC. 5797G SIMPL+® 319

Software Crestron SIMPL+ ®
 Call AnotherFunc(1); // ok

 Call AnotherFunc(di); // error – di is a DIGITAL_INPUT and
 // cannot be passed
 // by reference

}

Compiler Error 1501

function argument error: Argument <arg_num> cannot be
passed by value

In SIMPL+, arrays can only be passed by reference. The keyword, ByVal, cannot be
used within a function’s argument list in conjunction with arrays. A copy of an
individual element within an array must first be copied into an INTEGER or STRING
variable and then that variable can be passed.

Pass by Reference – The function will act directly on the variable that was passed as
the argument. Any changes to the variable within the called function the will be
reflected within the calling function.

Pass by Value – The function creates a local copy of the source variable. Any
changes to this local copy are not reflected in the source variable that was originally
passed to the function. The source variable will still retains it’s original value from
before the function was called.
The following are examples of this error:

FUNCTION MyFunc(ByVal INTEGER intArr[]) // error – arrays
cannot be
 // passed by value
{
}

FUNCTION MyFunc(ByVal STRING strArr[]) // error – arrays
cannot be
 // passed by value
{
}

FUNCTION MyFunc(ByVal INTEGER intArr[][]) // error – arrays
cannot be
 // passed by value
{
}

FUNCTION MyFunc(ByVal STRING strArr[][]) // error – arrays
cannot be
 // passed by value
{
}

320 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1502

function argument error: Function contains incomplete
number of arguments

Function call contains an
unmatched number of
arguments

When calling a functions that contain parameter lists, the number of arguments
passed to the function must match the number of parameters defined for that function.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x, STRING str)
{
 Call MyFunc(1, “abc”); // ok

 Call MyFunc(); // error – 2 arguments are expected
 Call MyFunc(1); // error – argument 2 is missing
}

Compiler Error 1503

function argument error: Input or Output signal expected:
'<identifier>'

The expected identifier must be of an Input or Output signal datatype (i.e.:
DIGITAL_INPUT, ANALOG_OUTPUT, STRING_INPUT, etc.).

The following are examples of this error:
DIGITAL_INPUT digIn, digInArr[10];
DIGITAL_INPUT digIn;
ANALOG_INPUT anlgIn;
ANALOG_OUTPUT anlgOut;
STRING_INPUT strIn[100];
STRING_OUTPUT strOut;
BUFFER_INPUT buffIn[100];

INTEGER i;
STRING str[100];

FUNCTION MyFunc()
{
 i = IsSignalDefined(digIn); // ok
 i = IsSignalDefined(digInArr[5]); // ok
 i = IsSignalDefined(digOut); // ok
 i = IsSignalDefined(anlgIn); // ok
 i = IsSignalDefined(anlgOut); // ok
 i = IsSignalDefined(strIn); // ok
 i = IsSignalDefined(strOut); // ok
 i = IsSignalDefined(buffIn); // ok

 digOut = IsSignalDefined(i); // error – ‘i’ is not
an Input
Language Reference Guide - DOC. 5797G SIMPL+® 321

Software Crestron SIMPL+ ®
 // or Output signal
 i = IsSignalDefined(str); // error – ‘i’ is not
an Input
 // or Output signal
 digOut = IsSignalDefined(5); // error – ‘5’ is not
an Input
 // or Output signal
}

Compiler Error 1504

function argument error: Incomplete number of format string
arguments

Format string contains an
unmatched number of arguments

Argument <arg_num> is missing
or invalid.
Format Specifier expected

Argument <arg_num> is missing
or invalid. <decl_type> expected

Format lists contain format specifiers that tell the compiler to replace a given
specifier with the value or result given in the argument list that follows. A format list
is analogous to a function parameter list in that the format specifier tells the compiler
what type of argument to expect. For each format specifier, their must be a
corresponding value or result in the argument list that follows. This value or result
must also be of the same datatype.

Format strings contain specifications that determine the output format for the
arguments. The format argument consists of ordinary characters, escape sequences,
and (if arguments follow format) format specifications Format Specifications always
begin with a percent sign (%) and are read left to right. When the first format
specification is encountered (if any), it converts the value of the first argument after
format and outputs it accordingly. The second format specification causes the second
argument to be converted and output, and so on.
The following are examples of this error:

FUNCTION MyFunc()
{
 INTEGER x, intArr[100];
 STRING str[100], strArr[100][100];

 Print(“Hello World”); // ok
 Print(“My name is %s. My age is %d”, “David”, 33); /
/ ok
 Print(“My name is %s. My age is %d”, str, x); // ok

 MakeString(str, “Hello World”); // ok
 MakeString(str, “My name is %s. My age is %d”, str, x);
// ok

 Print(“My name is %s. My age is %d”, “David”); //
error –
 // %d format specifier does not have a
322 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
 // corresponding value

 Print(“My name is %s. My age is %d”, 33, “David”); //
error -
 // both format specifiers contain
corresponding
 // values of different datatypes

 SetArray(strArr, 1); // ok
 SetArray(strArr, “abc”); // ok
 SetArray(intArr, 0); // ok

 SetArray(“abc”, 1); // error – “abc” is not an array
 SetArray(1, “abc”); // error – 1 is not an array
}

Compiler Error 1505

function argument error: Format string contains invalid
format specifier

An invalid format specifier was used within a format string.

Format strings contain specifications that determine the output format for the
arguments. The format argument consists of ordinary characters, escape sequences,
and (if arguments follow format) format specifications Format Specifications always
begin with a percent sign (%) and are read left to right. When the first format
specification is encountered (if any), it converts the value of the first argument after
format and outputs it accordingly. The second format specification causes the second
argument to be converted and output, and so on.
The following are examples of this error:

FUNCTION MyFunc()
{
 Print(“Hello World”); // ok
 Print(“My name is %s. My age is %d”, “David”, 33); /
/ ok

 Print(“My name is %xs”, “David”); // error - %xs is an
invalid
 // format specifier
}

Language Reference Guide - DOC. 5797G SIMPL+® 323

Software Crestron SIMPL+ ®
Compiler Error 1506

function argument error: 0, 1 or 2 constant expected for
argument 1

The function, MakeString, can contain a 0, 1, 2 as the first argument. This tells the
control system to output the resulting string to a specific destination. An integer
value other than 0, 1 or 2 was encountered as the first argument of MakeString().

The different destinations are as follows:
 0: Computer Port, same as PRINT.
 1: CPU (same functionality as the SendPacketToCPU function)
 2: Cresnet Network (same functionality as the SendCresnetPacket function).

The following are examples of this error:
FUNCTION MyFunc(INTEGER x, STRING str)
{
 Call MyFunc(1, “abc”); // ok

 Call MyFunc(); // error – 2 arguments are expected
 Call MyFunc(1); // error – argument 2 is missing
}

Compiler Error 1507

function argument error: Argument <arg_num>: Missing or
invalid array

An integer or string variable array was expected and was not encountered.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x[], STRING str[])
{
 INTEGER i;
 STRING strArr[100][100];

 SetArray(x, 1); // ok
 Call MyFunc(x, StrArr); // ok

 SetArray(i, 1); // error – i is not an array
 Call MyFunc(1, “abc”); // error – 1 is not an array
}

324 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1508

function argument error: I/O variable cannot be passed to
read file functions: '<identifier>'

Read file functions (ReadInteger, ReadString, etc.) cannot contain Input or Output
variables for the function’s resulting read buffer.

The following are examples of this error:
DIGITAL_OUTPUT digOut;
STRING_OUTPUT strOut;

FUNCTION MyFunc(SIGNED_INTEGER nHandle)
{
 STRING str[100];
 INTEGER x;

 ReadInteger(nHandle, x); // ok
 ReadString(nHandle, str); // ok

 ReadInteger(nHandle, digOut); // error
 ReadString(nHandle, strOut); // error
}

Language Reference Guide - DOC. 5797G SIMPL+® 325

Software Crestron SIMPL+ ®
Construct Errors (Compiler Errors 1600 to 1608)

Compiler Error 1600

construct error: 'Function Main' cannot contain function
parameters

 'Function Main' cannot return a value
Function Main is the starting point of a SIMPL+ program. It is automatically called
once when the system startup or is reset. Since this function is invoked by a method
outside of the SIMPL+ module, no arguments can be included in it’s argument list
and no value can be returned from it.

The following are examples of this error:
Function Main() // ok
{
}

INTEGER_FUNCTION Main() // error – Main() cannot
return
 // a value
{
}

Function Main(INTEGER cmdLineArg) // error – Main() cannot
contain
 // a parameter list
{
}

Compiler Error 1601

construct error: DuplicateCASE Statement
 Constant expected: '<identifier>'
Unlike the Switch Statement the CSwitch statement’s case statements must consist of
unique values. Expressions are not permitted within the case statements. Instead,
each case statement must contain a unique integer value for the CSwitch’s
comparison.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x)
{
 STRING str[100];

 CSwitch(x)
 {
 case (1): // ok – 1 has not been used yet
 {
 }

 case (2): // ok – 2 has not been used yet
326 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
 {
 }

 case (2): // error – 2 has been previously used
 {
 }

 case (5+6): // error – expressions are not allowed
 {
 }

 case (x): // error – variables are not allowed
 {
 }

 case (“abc”): // error – strings are not allowed
 {
 }

 case (str): // error – strings are not allowed
 {
 }
 }
}

Compiler Error 1602

construct error: Switch statement contains 'default' without
'case' labels

The Switch and CSwitch constructs must contain ‘case’ statements if the ‘default’
statement is to be used. The ‘default’ statement is optional.

The following are examples of this error:
FUNCTION MyFunc(INTEGER x)
{
 Switch (x)
 {
 case (1): // ok
 {
 }

 default: // ok
 {
 }
 }

 CSwitch (x)
 {
 case (1): // ok
 {
 }

 default: // ok
Language Reference Guide - DOC. 5797G SIMPL+® 327

Software Crestron SIMPL+ ®
 {
 }
 }

 Switch (x)
 {
 default: // error – no Case statement in Switch
 {
 }
 }

 CSwitch (x)
 {
 default: // error – no Case statement in Switch
 {
 }
 }
}

Compiler Error 1603

construct error: #CATEGORY does not exist:
'<categorgy_number>'.

Defaulting to Category Type, ""32""
(Miscellaneous).

The category number for this compiler directive was not found or was not a valid
category number within the Symbol Tree Category List within SIMPL windows. The
category number must be enclosed in quotation marks.

Selecting Edit | Insert Category from the SIMPL+ menu will display the list of valid
category numbers and give the option for this compiler directive to be automatically
inserted into the SIMPL+ module.

The following are examples of this error:
#CATEGORY “6” // ok – “6” is the category number
 // for Lighting

#CATEGORY “Lighting” // error – the category number,
“6”,
 // should be used instead of
 // the category symbol name

#CATEGORY 6 // error – the category number should
 // be enclosed in quotation marks

#CATEGORY 99 // error – invalid category number

#DEFINE_CONSTANT MyCategory 6
#CATEGORY MyCategory // error – cannot substitute
category
 // number with #DEFINE_CONSTANTs
328 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1604

construct error: 'EVENT' already has a body
The EVENT statement can only be defined once per SIMPL+ module. A previously
defined definition of EVENT was already encountered by the compiler.

The following are examples of this error:
EVENT // ok
{

}

EVENT // error – EVENT is already defined
{

}

Compiler Error 1605

construct error: Function can only be contained within an
event

The function, TerminateEvent, can only be used within a PUSH, CHANGE,
RELEASE or EVENT statement. The compiler encountered this function outside of
one of these event functions.

The following are examples of this error:
DIGITAL_INPUT digIn;

EVENT
{
 TerminateEvent; // ok
}

PUSH digIn
{
 TerminateEvent; // ok
}

RELEASE digIn
{
 TerminateEvent; // ok
}

CHANGE digIn
{
 TerminateEvent; // ok
}

FUNCTION MyFunc()
{
 while (1)
Language Reference Guide - DOC. 5797G SIMPL+® 329

Software Crestron SIMPL+ ®
 {
 TerminateEvent; // error – TerminateEvent is not within
 // an event function
 }
}

Compiler Error 1606

construct error: Statement must be contained within a loop
statement

The ‘break’ statement can only be used with a loop construct. Valid loop constructs
are While loops, Do-While loops and For loops. The compiler encountered this
function outside of one of these event functions.

The following are examples of this error:
FUNCTION MyFunc()
{
 INTEGER I;

 for (i = 1 t 10)
 {
 break; // ok
 }

 while (1)
 {
 break; // ok
 }

 do
 {
 break; // ok

 } until (1);

 if (1)
 {
 break; // error – break cannot exist within an ‘if’
statement
 }
}

EVENT
{
 break; // error – TerminateEvent should be used instead
}

330 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Error 1607

construct error: GetLastModifiedArrayIndex may return an
ambiguous signal index

If an event function (EVENT, PUSH, CHANGE, RELEASE) is acting on more than
one input array signal, the specific array will not be able to be determined based on
the index returned from GetLastModifiedArrayIndex(). In order to use
GetLastModifiedArrayIndex() for multiple input signal arrays, a separate event
function will have to be defined for each array.

The following are examples of this error:
DIGITAL_INPUT digIn[10];
ANALOG_INPUT anlgIn[10];

PUSH digIn
{
 INTEGER i;

 i = GetLastModfiedArrayIndex(); // ok – index from digIn
}

PUSH anlgIn
{
 INTEGER i;

 i = GetLastModfiedArrayIndex(); // ok – index from anlgIn
}

CHANGE digIn, anlgIn
{
 INTEGER i;

 i = GetLastModfiedArrayIndex(); // error – ambiguous result
}

Compiler Error 1608

construct error: Missing library file name
A filename was not found following the compiler directive, #USER_LIBRARY or
#CRESTRON_LIBRARY. This filename must be enclosed within quotation marks.
The file extension (.usl or .csl) should NOT be used when specifying the filename.

The following are examples of this error:
#USER_LIBRARY “MyUserLib” // ok
#CRESTRON_LIBRARY “EvntSched” // ok

#USER_LIBRARY MyUserLib // error – missing quotation marks
#USER_LIBRARY MyUserLib.usl // error – missing quotation
marks and
 // extension is not allowed
Language Reference Guide - DOC. 5797G SIMPL+® 331

Software Crestron SIMPL+ ®
File Errors (Compiler Errors 1700 to 1702)

Compiler Error 1700

file error: End of file reached
The compiler reached the end of file before all functions or statements were
completed.

• Make sure all functions have matching opening and closing braces.

• Make sure all statement expressions have matching opening and closing parenthesis.

Compiler Error 1701

file error: Error writing header file: '<file_name>'
 Error writing file: '<file_name>'
 Error writing library file
 Error writing output file
 Error creating compiler makefile: '<file_name>'
 Error opening compiler source makefile:

'<file_name>'
 Error opening source file: '<file_name>'
The specified file could not be opened or created.

• Make sure there is sufficient disk space for the file to be written.

• If including a User or Crestron Library (#USER_LIBRARY or
#CRESTRON_LIBRARY), make sure the library file name is valid, spelled
properly and does not contain the file extension (.usl or .csl).

• Make sure the latest version of the Crestron Database is installed.

• Make sure the path for the Crestron Database and User SIMPL+ files have been
specified within SIMPL Windows.

• Make sure the file does not exist with a Read-Only attribute.

• Make sure another application (i.e.: another instance of SIMPL+) is not
currently running with this file open.

Compiler Error 1702

file error: Error extracting library, '<file_name>', from
archive: '<archive_file>'

The specified file was not found within the Crestron Library archive.

• Make sure the library file name is valid, spelled properly and does not contain
the file extension (.csl).

• Make sure the latest version of the Crestron Database is installed.

• Make sure the path for the Crestron Database has been specified within SIMPL
Windows.
332 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Warnings (Compiler Errors 1800 to 1803)

Compiler Warning 1800

compiler warning: 'Return' statement will only terminate
current Wait statement's function scope

A ‘Return’ statement within a Wait Statement’s block of code will cause the Wait
Statement to terminate. It will NOT terminate the current function that the Wait
Statement resides within.

Wait Statements are similar to event functions (EVENT, PUSH, CHANGE,
RELEASE) in that they execute in their own program thread. The control system can
have many threads executing at the same time; each thread runs concurrent with one
another.

The following are examples of this warning:
FUNCTION MyFunc(INTEGER x)
{

 if (x == 1)

 {
 Wait(500)

 {

 return; // warning - this will terminate the
 // Wait Statement. It will NOT

 // terminate MyFunc()

 }
 }

 else if (x == 2)

 return; // this will terminate MyFunc()

 x = x + 1;

}

Compiler Warning 1801

compiler warning: 'TerminateEvent' statement will only
terminate current Wait statement's
function scope

When Wait Statements are embedded within one another, the TerminateEvent, will
only terminate the corresponding Wait Statement of the same scope. It will NOT
terminate any Wait Statements that are of a different scope.

Wait Statements are similar to event functions (EVENT, PUSH, CHANGE,
RELEASE) in that they execute in their own program thread. The control system can
have many threads executing at the same time; each thread runs concurrent with one
another.
Language Reference Guide - DOC. 5797G SIMPL+® 333

Software Crestron SIMPL+ ®
Scope refers to the level at which an Event, user-defined function or statement
resides. Having a global scope means that the function or variable can be called or
accessed from anywhere within the program. A local scope means that the variable
can only be accessed from within the event or function that it resides in.

The following are examples of this warning:
FUNCTION MyFunc(INTEGER x)
{

 Wait(500, MyLabel1)

 {
 Wait(300, MyLabel2)

 {

 TerminateEvent; // warning – this will only terminate
 // the Wait Statent, MyLabel2.

 // MyLabel1 will continue to

 // execute
 }

 }

}

Compiler Warning 1802

compiler warning: #CATEGORY_NAME defined more than
once.

Using: #CATEGORY_NAME "<number>"
Only one category name is allowed for each SIMPL+ module. If the compiler
directive, #CATEGORY, is found more than once within a SIMPL+ module, the
compiler will use the category number from the last occurrence of the compiler
directive.

The following are examples of this warning:
#CATEGORY “1”

#CATEGORY “2”

FUNCTION MyFunc()

{
}

#CATEGORY “3” // this is the resulting category number
 // for this SIMPL+ module

FUNCTION AnotherFunc()
{

}

334 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Compiler Warning 1803

compiler warning: Possible data loss: LONG_INTEGER to
INTEGER assignment

A LONG_INTEGER result was assigned to an INTEGER variable or passed to a
function for an INTEGER parameter. The 32-bit LONG_INTEGER will be
truncated to 16-bit value and assigned to the integer, resulting in a loss of data.

• Make sure all the datatypes within an expression are of the same datatype.

• Make sure the parameter of a function being called is of the same datatype as
the argument being passed in.

• Make sure the return value of a function matches the destination’s datatype.

The following are examples of this warning:
LONG_FUNCTION MyFunc(INTEGER x)

{

 INTEGER i;
 LONG_INTEGER j;

 i = i; // ok – both sides of the assigment are of
 // the same datatype

 j = i; // ok – no loss of data

 j = j; // ok – both sides of the assigment are of
 // the same datatype

 i = j; // warning – LONG_INTEGER being assigned to
 // an INTEGER

 Call MyFunc(i); // ok
 Call MyFunc(j); // warning

 i = MyFunc(5); // warning – the integer, i, is being
assigned a

 // LONG_INTEGER value
}

Language Reference Guide - DOC. 5797G SIMPL+® 335

Software Crestron SIMPL+ ®
SIMPL+ Revisions

For the latest revisions to SIMPL Windows, refer to the release notes installed with
the program. This can be accessed in the Start Menu, under Programs | Crestron |
SIMPL Windows
336 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Obsolete Functions

System Interfacing - Cresnet and CPU

GetCIP

Name:
GetCIP

Syntax:
INTEGER GetCIP(INTEGER CIPID, INTEGER JOIN_NUMBER,
INTEGER TYPE);

Description:
Retrieves the current state of the join number on a particular CIP ID (referred to as IP
ID in SIMPL+). Note that the device must be defined in SIMPL Windows and the
join number to use must have a signal tied to it for this function to work.

Parameters:
CIPID is an INTEGER containing the ID of the CIP device to query.

JOIN_NUMBER is an INTEGER containing the Join number to get the status. For
touchpanels, the join number is identical to the press/feedback number. For other
devices, contact Crestron customer service.

TYPE is one of several predefined constants:

din: Digital inputs from device (symbol output list)

ain: Analog inputs from device (symbol output list)

dout: Digital outputs to device (symbol input list)

aout: Analog outputs to device (symbol input list)

NOTE: CIP is defined as Cresnet (over) Internet Protocol.

NOTE: Access to serial signals is not supported.
Language Reference Guide - DOC. 5797G SIMPL+® 337

Software Crestron SIMPL+ ®
Return Value:
An Integer. For Digital values, a non-zero value indicates a logic high and a 0 value
indicates a logic low. For analog values, a 16-bit number is returned corresponding
to the state of the analog join.

Example:
Assuming a relay card has been defined in Slot 1 and Relay A2 has a signal name tied
to it, and a CEN-IO has been defined at CIP ID 03 and cue i1 has a signal tied to it,
this SIMPL+ statement will connect the two:

 SetSlot(1,2,dout) = GetCIP(0x03,18,din);

Version:
SIMPL+ Version 2.00 only. This function is not available in Versions 1.00 or 3.00.

Control System:
X-Generation only

GetCresnet

Name:
GetCresnet

Syntax:
INTEGER GetCresnet(INTEGER CRESNET_ID, INTEGER
JOIN_NUMBER, INTEGER TYPE);

Description:
Retrieves the current state of the join number on a particular Cresnet Network ID.
Note that the device must be defined in SIMPL Windows and the join number to use
must have a signal tied to it for this function to work.

Parameters:
CRESNET_ID is an INTEGER containing the ID of the Cresnet Network device to
query.

JOIN_NUMBER is an INTEGER containing the Join number to get the status. For
touchpanels, the join number is identical to the press/feedback number. For other
devices, contact Crestron customer service.

NOTE: In the above example statement, the join number representing cue i1 on the
CEN-IO is 18.

NOTE: This is not a permanent connection; it will only set the state when this
statement is executed
338 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
TYPE is one of several predefined constants:

din: Digital inputs from device (symbol output list)

ain: Analog inputs from device (symbol output list)

dout: Digital outputs to device (symbol input list)

aout: Analog outputs to device (symbol input list)

Return Value:
An Integer. For Digital values, a non-zero value indicates a logic high and a 0 value
indicates a logic low. For analog values, a 16-bit number is returned corresponding
to the state of the analog join.

Example:
Assuming a relay card has been defined in Slot 1 and Relay A2 has a signal name tied
to it, and a touchpanel has been defined at Cresnet ID 07, and press 42 has a signal
name tied to it, this SIMPL+ statement will connect the two:

SetSlot(1,2,dout) = GetCresnet(0x07,42,din);

Version:
SIMPL+ Version 2.00 only. This function is not available in Versions 1.00 or 3.00.

Control System:
X-Generation only

GetSlot

Name:
GetSlot

Syntax:
INTEGER GetSlot(INTEGER SLOT_NUMBER, INTEGER
JOIN_NUMBER, INTEGER TYPE);

Description:
Retrieves the current state of the join number on a particular card. Note that the device
must be defined in SIMPL Windows and the join number to use must have a signal
tied to it for this function to work.

NOTE: Access to serial signals is not supported.

NOTE: This is not a permanent connection; it will only set the state when this
statement is executed.
Language Reference Guide - DOC. 5797G SIMPL+® 339

Software Crestron SIMPL+ ®
Parameters:
SLOT_NUMBER is an INTEGER containing the slot number of the card to query.

JOIN_NUMBER is an INTEGER containing the Join number to get the status.

TYPE is one of several predefined constants:

din: Digital inputs from device (symbol output list)

ain: Analog inputs from device (symbol output list)

dout: Digital outputs to device (symbol input list)

aout: Analog outputs to device (symbol input list)

Return Value:
An Integer. For Digital values, a non-zero value indicates a logic high and a 0 value
indicates a logic low. For analog values, a 16-bit number is returned corresponding
to the state of the analog join.

Example:
Assuming a relay card has been defined in Slot 1 and Relay A2 has a signal name tied
to it, and a CNXIO-16 has been defined in Slot 2 and cue i1 has a signal tied to it, this
SIMPL+ statement will connect the two:

 SetSlot(1,2,dout) = GetSlot(2,1,din);

Version:
SIMPL+ Version 2.00 only. This function is not available in Versions 1.00 or 3.00.

Control System:
X-Generation only

IsSignalDefined

Name:
IsSignalDefined

Syntax:
INTEGER IsSignalDefined <input/output signal>;

NOTE: Access to serial signals is not supported.

NOTE: This is not a permanent connection; it will only set the state when this
statement is executed.
340 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Description:
Retrieves the current SIMPL signal number associated with a particular input or
output. This is generally used to determine if a particular input or output on a gate is
being used, and generally used with arrayed inputs or outputs. This can be used to
build a gate of a predetermined maximum size, and allow the user to add and subtract
signals on the input or output of the gate (i.e., the program would be written to iterate
through a DIGITAL_INPUT array until IsSignalDefined returns a 0).

Parameters:
Legal output and input signal types are ANALOG_INPUT, ANALOG_OUTPUT,
BUFFER_INPUT, DIGITAL_INPUT, DIGITAL_OUTPUT, STRING_INPUT,
STRING_OUTPUT.

Return Value:
The particular input or output is tied to an integer giving the signal number. If a signal
has been tied to that input or output of the gate, a non-zero value will be returned. If
the signal is tied to 0 on the SIMPL gate or the signal is not defined, then 0 will be
returned. If the signal is tied to 1, then 1 is returned.

Example:
DIGITAL_INPUT INS[20];

INTEGER NumInputs;

FUNCTION MAIN()

{

FOR(NumInputs = 20 to 1 Step -1)

IF(IsSignalDefined(INS[NumInputs]))

Break;

}

This example computes how many inputs are used on the gate. It should be noted that
it is useful to work backwards from the end of the gate. If the user tied five signals, a
0, and then five more signals, this would yield the correct result that the 11th input
was the last one used.

Version:
SIMPL+ Version 2.00

SendCresnetPacket

Name:
SendCresnetPacket

Syntax:
SendCresnetPacket(STRING PACKET);
Language Reference Guide - DOC. 5797G SIMPL+® 341

Software Crestron SIMPL+ ®
Description:
Sends the string specified by PACKET onto the Cresnet network. It duplicates the
function of the SIMPL Windows symbol “Network Transmission (Speedkey:
NTX).” This function is not used in general programming.

Parameters:
PACKET is a string containing the command to put on the Cresnet network.

Return Value:
None.

Example:
SendCresnetPacket(“\xFF\x03\x02”);

This example will send a broadcast message to all touchpanels causing them to enter
sleep mode. The preferable way to do this is use the SLEEP input of the
BROADCAST symbol in SIMPL Windows.

Version:
SIMPL+ Version 2.00

SendPacketToCPU

Name:
SendPacketToCPU

Syntax:
SendPacketToCPU(STRING PACKET);

Description:
Sends the string specified by PACKET to the Cresnet CPU. This is normally used for
sending ESC style commands to the CPU for control. This function duplicates the
functionality of the SIMPL Windows symbol “Send Message to CPU (Speedkey:
TMSG).” This function is not used in general programming.

Parameters:
PACKET is a string containing the command to send to the CPU.

Return Value:
None.
342 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Example:
SendPacketToCPU(“\x1BDFF\r”);

This example will turn the Super Debugger on, which shows all network transitions
on the console port of the control system. This command would normally be typed in
manually through the Crestron Viewport, since it is for debugging only.

Version:
SIMPL+ Version 2.00

SetCIP

Name:
SetCIP

Syntax:
SetCIP(INTEGER CIPID, INTEGER JOIN_NUMBER, INTEGER
TYPE);

Description:
Sets the state of the join number on a particular CIP ID. Note that the device must be
defined in SIMPL Windows and the join number to use must have a signal tied to it
for this function to work.

Parameters:
CIPID is an INTEGER containing the ID of the CIP device to set the join number.
JOIN_NUMBER is an INTEGER containing the Join number to set. TYPE is one of
several predefined constants:

din: Digital inputs from device (symbol output list)

ain: Analog inputs from device (symbol output list)

dout: Digital outputs to device (symbol input list)

aout: Analog outputs to device (symbol input list)

Return Value:
None.

Example:
Assuming a CEN-IO has been defined at CIP ID 03 and Relay1 has a signal name
tied to it, and a touchpanel has been defined at Cresnet ID 07, and press 42 has a
signal name tied to it, this SIMPL+ statement will connect the two:

SetCIP(0x03,1,dout) = GetCresnet(0x07,42,din);

NOTE: This is not a permanent connection; it will only set the state when this
statement is executed.
Language Reference Guide - DOC. 5797G SIMPL+® 343

Software Crestron SIMPL+ ®
Version:
SIMPL+ Version 2.00 only. This function is not available in Versions 1.00 or 3.00.

Control System:
X-Generation only

SetCresnet

Name:
SetCresnet

Syntax:
SetCresnet(INTEGER CRESNET_ID, INTEGER JOIN_NUMBER,
INTEGER TYPE);

Description:
Sets the state of the join number on a particular Cresnet Network ID. Note that the
device must be defined in SIMPL Windows and the join number to use must have a
signal tied to it for this function to work.

Parameters:
CRESNET_ID is an INTEGER containing the ID of the Cresnet Network device to
set the join number. JOIN_NUMBER is an INTEGER containing the Join number to
set. TYPE is one of several predefined constants:

din: Digital inputs from device (symbol output list)

ain: Analog inputs from device (symbol output list)

dout: Digital outputs to device (symbol input list)

aout: Analog outputs to device (symbol input list)

Return Value:
None.

Example:
Assuming a touchpanel has been defined at Cresnet ID 07, and press 42 and feedback
69 have signal names tied to them, this SIMPL+ statement will connect the two:

SetCresnet(0x07,69,dout) = GetCresnet(0x07,42,din);

Version:
SIMPL+ Version 2.00 only. This function is not available in Versions 1.00 or 3.00.

NOTE: This is not a permanent connection; it will only set the state when this
statement is executed.
344 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Control System:
X-Generation only

SetSlot

Name:
SetSlot

Syntax:
SetSlot(INTEGER SLOT_NUMBER, INTEGER JOIN_NUMBER,
INTEGER TYPE);

Description:
Sets the state of the join number on a particular card slot. Note that the device must
be defined in SIMPL Windows and the join number to use must have a signal tied to
it for this function to work.

Parameters:
SLOT_NUMBER is an INTEGER containing the slot number of card to set the join
number. JOIN_NUMBER is an INTEGER containing the Join number to set. TYPE
is one of several predefined constants:

din: Digital inputs from device (symbol output list)

ain: Analog inputs from device (symbol output list)

dout: Digital outputs to device (symbol input list)

aout: Analog outputs to device (symbol input list)

Return Value:
None.

Example:
Assuming a relay card has been defined in Slot 1 and Relay A2 has a signal name tied
to it, and a touchpanel has been defined at Cresnet ID 07, and press 42 has a signal
name tied to it, this SIMPL+ statement will connect the two:

SetSlot(1,2,dout) = GetCresnet(0x07,42,din);

Version:
SIMPL+ Version 2.00 only. This function is not available in Versions 1.00 or 3.00.

Control System:
X-Generation only

NOTE: This is not a permanent connection; it will only set the state when this
statement is executed.
Language Reference Guide - DOC. 5797G SIMPL+® 345

Software Crestron SIMPL+ ®
Interfacing to the CEN-OEM

Interfacing to the CEN-OEM via a SIMPL+ Program
Overview

When using a X-Generation system to communicate over Ethernet to a CEN-OEM,
the CEN-OEM definition is used from the SIMPL Windows Configuration Manager.
This symbol has analog inputs, analog outputs, digital inputs, digital outputs, serial
inputs, and serial outputs.

When a list of variables such as DIGITAL_INPUTs is declared, they normally start
at Digital Input 1 on the symbol and progress linearly up. For some applications, it
may be desirable to change the join numbers (leave gaps on the symbol) for a better
visual look.

#ANALOG_INPUT_JOIN

Name:
#ANALOG_INPUT_JOIN

Syntax:
#ANALOG_INPUT_JOIN<constant>

Description:
Changes the join number starting with the next ANALOG_INPUT definition to the
join number specified by <constant>.

Example:
ANALOG_INPUT SIG1, SIG2, SIG3, SIG4;

In this example, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

ANALOG_INPUT SIG1, SIG2;

#ANALOG_INPUT_JOIN 20

ANALOG_INPUT SIG3, SIG4;

Here, SIG1 and SIG2 still reference Join #1 and Join #2, but SIG3 has been changed
to reference Join #20, and SIG4 references Join #21.

Version:
SIMPL+ Version 2.00
346 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
#ANALOG_OUTPUT_JOIN

Name:
#ANALOG_OUTPUT_JOIN

Syntax:
#ANALOG_OUTPUT_JOIN<constant>

Description:
Changes the join number starting with the next ANALOG_OUTPUT definition to the
join number specified by <constant>.

Example:
ANALOG_OUTPUT SIG1, SIG2, SIG3, SIG4;

In this example, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

ANALOG_OUTPUT SIG1, SIG2;

#ANALOG_OUTPUT_JOIN 20

ANALOG_OUTPUT SIG3, SIG4;

SIG1 and SIG2 still reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, and SIG4 references Join #21.

Version:
SIMPL+ Version 2.00

#DIGITAL_INPUT_JOIN

Name:
#DIGITAL_INPUT_JOIN

Syntax:
#DIGITAL_INPUT_JOIN<constant>

Description:
Changes the join number starting with the next DIGITAL_INPUT definition to the
join number specified by <constant>.

Example:
DIGITAL_INPUT SIG1, SIG2, SIG3, SIG4;

In this example, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

DIGITAL_INPUT SIG1, SIG2;
Language Reference Guide - DOC. 5797G SIMPL+® 347

Software Crestron SIMPL+ ®
#DIGITAL_INPUT_JOIN 20

DIGITAL_INPUT SIG3, SIG4;

SIG1 and SIG2 still reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, and SIG4 references Join #21.

Version:
SIMPL+ Version 2.00

#DIGITAL_OUTPUT_JOIN

Name:
#DIGITAL_OUTPUT_JOIN

Syntax:
#DIGITAL_OUTPUT_JOIN<constant>

Description:
Changes the join number starting with the next DIGITAL_OUTPUT definition to the
join number specified by <constant>.

Example:
DIGITAL_OUTPUT SIG1, SIG2, SIG3, SIG4;

In this example, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

DIGITAL_OUTPUT SIG1, SIG2;

#DIGITAL_OUTPUT_JOIN 20

DIGITAL_OUTPUT SIG3, SIG4;

SIG1 and SIG2 still reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, and SIG4 references Join #21.

Version:
SIMPL+ Version 2.00

#STRING_INPUT_JOIN

Name:
#STRING_INPUT_JOIN

Syntax:
#STRING_INPUT_JOIN<constant>
348 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Description:
Changes the join number starting with the next STRING_INPUT or
BUFFER_INPUT definition to the join number specified by <constant>.

Example:
STRING_INPUT SIG1[20], SIG2[20], SIG3[20], SIG4[20];

BUFFER_INPUT B1$[20]

In this example, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, SIG4 references Join #4, and B1$ references Join#5.

STRING_INPUT SIG1[20], SIG2[20];

#STRING_INPUT_JOIN 20

STRING_INPUT SIG3[20], SIG4[20];

BUFFER_INPUT B1$[20]

SIG1 and SIG2 still reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, SIG4 references Join #21, and B1$ references Join#22.

Version:
SIMPL+ Version 2.00

#STRING_OUTPUT_JOIN

Name:
#STRING_OUTPUT_JOIN

Syntax:
#STRING_OUTPUT_JOIN<constant>

Description:
Changes the join number starting with the next STRING_OUTPUT definition to the
join number specified by <constant>.

Example:
STRING_OUTPUT SIG1, SIG2, SIG3, SIG4;

In this example, SIG1 references Join #1, SIG2 references Join #2, SIG3 references
Join #3, and SIG4 references Join #4.

STRING_OUTPUT SIG1, SIG2;

#STRING_OUTPUT_JOIN 20

STRING_OUTPUT SIG3, SIG4;

SIG1 and SIG2 still reference Join #1 and Join #2, but SIG3 has been changed to
reference Join #20, and SIG4 references Join #21.
Language Reference Guide - DOC. 5797G SIMPL+® 349

Software Crestron SIMPL+ ®
Version:
SIMPL+ Version 2.00

CEN-OEM-Specific Definitions

CEN-OEM Specific Definitions Overview

The CEN-OEM has one serial port which is used to communicate with a destination
device. SIMPL+ defines several special purpose variables exclusively to work with
the CEN-OEM to manipulate this serial port. These variables are only valid when the
file is saved with an OEM extension. Each OEM variable has a specific type
(DIGITAL_INPUT, etc.) to which all the same rules as any other variable declared
of that type have.

In the following examples, the “device” port is the port that talks to the equipment
(device) being controlled. The “main” port is the computer port of the CEN-OEM.
This port is usually used for communicating with a host computer for maintenance,
but various pins may be used for other applications as shown in the following
examples.

_OEM_BREAK

Name:
_OEM_BREAK

Syntax:
_OEM_BREAK = <expression>; // Write to Variable

or any expression that can use a variable as part of its contents.

Description:
When set to a non-zero value, causes a short break to be transmitted on the port. A
Short break is 17-20 bits of logic low. When the system is done generating the short
break, it will set the variable to 0. The variable may also be read back from to
determine its current status. It is treated the same as a DIGITAL_OUTPUT.

Example:
_OEM_BREAK = 1; // Generate A Short Break

Version:
SIMPL+ Version 2.00
350 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
_OEM_CD

Name:
_OEM_CD

Syntax:
Any expression that can use a variable as part of its contents.

Description:
This variable is treated as a DIGITAL_INPUT and may be read from only. CD is the
acronym for Carrier Detect. When a modem is hooked up to an RS-232 port and a
connection (carrier) is made, the modem typically drives this pin high to let the
connected hardware know that a data connection is present. This line may be used for
other purposes depending on the hardware connected to the CEN-OEM.

Example:
PUSH _OEM_CD

{

PRINT(“Carrier Detect Pin has gone high!\n”);

}

Version:
SIMPL+ Version 2.00

_OEM_CTS

Name:
_OEM_CTS

Syntax:
Any expression that can use a variable as part of its contents.

Description:
This variable is treated as a DIGITAL_INPUT and may be read from only. CTS is
the acronym for Clear To Send. In flow control for handshaking, a device will
typically control this line, and raise it high when the CEN-OEM is allowed to
transmit, and drop it low when it wants the CEN-OEM to stop transmitting.

It can also be used in other situations besides flow control, and in these situations, the
CEN-OEM can monitor the status of the line directly through this pin.
Language Reference Guide - DOC. 5797G SIMPL+® 351

Software Crestron SIMPL+ ®
Example:
PUSH _OEM_CTS

{

PRINT(“CTS Pin has gone high!\n”);

}

Version:
SIMPL+ Version 2.00

_OEM_DTR

Name:
_OEM_DTR

Syntax:
_OEM_DTR = <value>;

or any expression that can use a variable as part of its contents.

Description:
When set to a non-zero value, raises the DTR pin high. This pin is typically used to
signify “Data Terminal Ready”, which means that the CEN-OEM is telling an
external piece of equipment that it is online and ready to function. The pin may be
used for other purposes (or not at all). This value is treated as a DIGITAL_OUTPUT
and may be read.

Example:
PUSH _OEM_CTS

{

PULSE(500, _OEM_DTR);

}

The above example will pulse the DTR pin for 5-seconds when the CTS line goes
high.

Version:
SIMPL+ Version 2.00
352 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
_OEM_LONG_BREAK

Name:
_OEM_LONG_BREAK

Syntax:
_OEM_LONG_BREAK = <expression>;

or any expression that can use a variable as part of its contents.

Description:
When set to a non-zero value, causes the start of a break being transmitted on the port.
A break is continuous logic low being generated on the port. In order to stop break
generation, the variable should be set to 0. The variable may also be read back from
to determine its current status. It is treated the same as a DIGITAL_OUTPUT.

If break generation is in progress and data transmission on _OEM_STR_OUT will be
ignored.

Example:
PUSH _OEM_CTS

{

_OEM_LONG_BREAK = 1;

WAIT(100)

_OEM_LONG_BREAK=0;

}

In this example, the break is generated for 1-second when the CTS pin is driven high.

Version:
SIMPL+ Version 2.00

_OEM_MAX_STRING

Name:
_OEM_MAX_STRING

Syntax:
_OEM_MAX_STRING = <expression>;

or any expression that can use a variable as part of its contents.

Description:
Controls the maximum embedded packet size that is transmitted on the Ethernet port.
This variable is treated the same as ANALOG_OUTPUT. The default is 250 bytes
but it is recommended that this value not be changed for most applications.
Language Reference Guide - DOC. 5797G SIMPL+® 353

Software Crestron SIMPL+ ®
Example:
_OEM_MAX_STRING = 1000;

In this example, the maximum embedded packet size is changed to 1000 bytes.

Version:
SIMPL+ Version 2.00

_OEM_PACING

Name:
_OEM_PACING

Syntax:
_OEM_PACING = <expression>;

or any expression that can use a variable as part of its contents.

Description:
Controls the number of milliseconds the system will delay between sending bytes in
a given string. This variable is treated the same as ANALOG_OUTPUT. The
maximum value allowed is 255 (250ms). Values greater than 255 will use the lower
byte of the number.

Example:
CHANGE _OEM_STR_IN

{

IF(_OEM_STR_IN = “\x01\x02”)

{

_OEM_STR_OUT = “\x02ACK\x03”;

CLEARSTRING(_OEM_STR_IN);

}

}

FUNCTION MAIN()

{

_OEM_PACING = 10;

}

In this example, the pacing is set to 10ms. When the string “\x01\x02” comes into the
port, a 5-byte string is sent out the port. The system waits 10ms after generating each
character before sending the next one.

Version:
SIMPL+ Version 2.00
354 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
_OEM_RTS

Name:
_OEM_RTS

Syntax:
_OEM_RTS = <expression>;

or any expression that can use a variable as part of its contents.

Description:
This variable is treated the same as DIGITAL_OUTPUT. In a program where
hardware handshaking is not being used, the program may control the RTS pin for its
own application. Writing a non-zero value to this variable sets the RTS pin high,
writing 0 sets it low.

Example:
PUSH _OEM_CTS

{

DELAY(10);

_OEM_RTS = 1;

}

In this program, the RTS pin will be driven high by the CEN-OEM 0.1-seconds after
the CTS pin is driven high by an external system.

Version:
SIMPL+ Version 2.00

_OEM_STR_IN

Name:
_OEM_STR_IN

Syntax:
Any expression where a BUFFER_INPUT is legal.

Description:
This variable is treated the same as BUFFER_INPUT and reflects data coming into
the CEN-OEM input buffer. The buffer is 255 bytes wide.
Language Reference Guide - DOC. 5797G SIMPL+® 355

Software Crestron SIMPL+ ®
Example:
INTEGER I;

CHANGE _OEM_STR_IN

{

FOR(I=1 to len(_OEM_STR_IN))

IF(byte(_OEM_STR_IN, I) = 0x7F

_OEM_STR_OUT = “\x15”;

CLEARSTRING(_OEM_STR_IN);

}

In this example, whenever the input buffer changes, it is scanned for the character
with the hex value of 0x7F. Each time it is present, a 0x15 is transmitted. The buffer
is cleared at the end of the iteration.

Version:
SIMPL+ Version 2.00

_OEM_STR_OUT

Name:
_OEM_STR_OUT

Syntax:
Any expression where a BUFFER_OUTPUT is legal.

Description:
This variable is treated the same as BUFFER_OUTPUT and reflects data coming
from the CEN-OEM input buffer. The buffer is 255 bytes wide.

Example:
INTEGER I;

CHANGE _OEM_STR_OUT
{
FOR(I=1 to len(_OEM_STR_OUT))
IF(byte(_OEM_STR_OUT, I) = 0x7F
_OEM_STR_IN = “\x15”;
CLEARSTRING(_OEM_STR_OUT);
}

In this example, whenever the input buffer changes, it is scanned for the character
with the hex value of 0x7F. Each time it is present, a 0x15 is transmitted. The buffer
is cleared at the end of the iteration.

Version:
SIMPL+ Version 2.00
356 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Index
Symbols
#ANALOG_INPUT_JOIN, 346
#ANALOG_OUTPUT_JOIN, 347
#CATEGORY, ... 33
#CRESTRON_LIBRARY, 34
#DEFAULT_NONVOLATILE, 35
#DEFAULT_VOLATILE, 36
#DEFINE_CONSTANT, 37
#DIGITAL_INPUT_JOIN, 347
#DIGITAL_OUTPUT_JOIN, 348
#HELP, ... 38
#HELP_BEGIN … #HELP_END, 39
#HINT, ... 40
#IF_DEFINED … #ENDIF, 41
#IF_NOT_DEFINED … #ENDIF, 44
#STRING_INPUT_JOIN, 348
#STRING_OUTPUT_JOIN, 349
#SYMBOL_NAME, .. 42
#USER_LIBRARY, ... 43
_OEM_BREAK, .. 350
_OEM_CD, .. 351
_OEM_CTS, ... 351
_OEM_DTR, .. 352
_OEM_LONG_BREAK, 353
_OEM_MAX_STRING, 353
_OEM_PACING, ... 354
_OEM_RTS, ... 355
_OEM_STR_IN, .. 355
_OEM_STR_OUT, .. 356

A
Abs, .. 205
Allowable I/O List Combinations, 45
ANALOG_INPUT, .. 47
ANALOG_OUTPUT, .. 48
Arithmetic Operators, ... 15
Array Operations, ... 93
Array out of bounds, .. 277

Arrays, ...31
ASSIGNMENT ERRORS,317
Atoi, ..109
Atol, ..110

B
Bit, ...100
Bit & Byte Functions, ...100
Bitwise Operators, ..15
Branching & Decision Constructs,86
BREAK, ..86
BUFFER_INPUT, ...50
ByRef, ByVal, ReadOnlyByRef,269
Byte, ..102

C
Calling a Function, ..274
CancelAllWait, ...258
CancelWait, ...259
CEN-OEM-Specific Definitions,277,

350
CHANGE, ...75
CheckForDisk, ..119
Chr, ...111
ClearBuffer, ..219
Comments, ..13
Common Runtime Errors,277
Common Runtime Overview,277
Compiler Directives, ...33
Compiler Directives Overview,33
Compiler Errors and Warnings Overview,286
COMPILER WARNINGS,333
CONSTRUCT ERRORS,326
Conventions Used, ..13
Converting from an X-Generation to a 2-Series

Target, ..7
CRESTRON Limited Warranty,367
CSWITCH, ...87
Language Reference Guide - DOC. 5797G SIMPL+® 357

Software Crestron SIMPL+ ®
D
Data Conversion Functions, 109
Date, ... 242
Day, .. 243
DECLARATION ERRORS, 304
Declarations, ... 45
Declarations Overview, .. 45
Delay, ... 234
DIGITAL_INPUT, ... 51
DIGITAL_OUTPUT, ... 52
DO - UNTIL, .. 82

E
Edit Preferences, ... 9
E-mail Functions, ... 71
EndFileOperations, ... 120
EVENT, .. 77
Events, .. 75
Example Programs, .. 279
EXPRESSION ERRORS, 301
Expressions & Statements, 81

F
FATAL ERRORS, .. 300
FILE ERRORS, .. 332
File Function Return Error Codes, 117
File Functions, .. 116
File Time and Date Functions Overview, 284
FILE_INFO Structure, .. 135
FileBOF, ... 121
FileClose,.. 122
FileDat, ... 123
FileDate, ... 123
FileDay, .. 125
FileDelete, .. 126
FileEOF, ... 127
FileGetDateNum, ... 128
FileGetDayOfWeekNum, 129
FileGetHourNum, ... 130
FileGetMinutesNum, .. 131
FileGetMonthNum, .. 132
FileGetSecondsNum, .. 133
FileGetYearNum, ... 134
FileLength, .. 136
FileMonth, .. 137

FileOpen, .. 138
FileRead, ... 141
FileSeek, ... 143
FileTime, .. 145
FileWrite, .. 146
Find, .. 220
FindClose, ... 148
FindFirst, ... 149
FindNext, .. 151
FOR, ... 83
Full Stack, ... 277
FUNCTION ARGUMENT ERRORS, 319
Function Definition, ... 267
Function Libraries, ... 275
Function Parameters, .. 268

G
Gather, .. 221
General Information, .. 22
GetC, ... 223
GetCIP, ... 337
GetCresnet, ... 338
GetCurrentDirectory, .. 152
GETDATENUM, .. 244
GETDAYOFWEEKNUM,................................. 245
GETHOURNUM, ... 246
GETHSECONDS, .. 247
GetLastModifiedArrayIndex, 93
GETMINUTESNUM, .. 248
GETMONTHNUM, ... 249
GetNumArrayCols, ... 95
GetNumArrayRows, ... 97
GETSECONDSNUM, .. 250
GetSlot, ... 339
GETTICKS, .. 251
GETYEARNUM, ... 252

H
High, ... 103

I
IF - ELSE, ... 89
IF-ELSE, ... 89
Insert Category, .. 11
INTEGER, .. 54
358 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Introduction, ... 1
IsDirectory, ... 153
IsHidden, .. 154
IsReadOnly, .. 155
IsSignalDefined, ... 340
IsSystem, .. 156
IsVolume, ... 157
ItoA, ... 112
ItoHex, .. 113

L
Language Constructs & Functions, 29
Language Constructs & Functions Overview, 29
Left, .. 224
Len, ... 225
Library not found, .. 277
Licensing of SIMPL+ Cross Compiler, 2
LONG_INTEGER, ... 56
Looping Constructs, ... 82
Low, ... 104
Lower, .. 226
LtoA, .. 114
LtoHex, ... 115

M
MakeDirectory, .. 158
MakeString, .. 214
Mathematical Functions, 205
Max, ... 206
Merchandise, .. 367
Merchandise Returns / Repair Service, 367
Mid, .. 227
MIN, ... 207
MONTH, .. 253
MulDiv, .. 208

N
Nonvolatile, .. 58, 70
Numeric Formats, ... 21

O
Operator Precedence & Grouping, 20
Operators, ... 13

P
PauseAllWait, ... 260
PauseWait, .. 261
Print, ... 216
ProcessLogic, ... 235
Program Structure, ... 276
Programming Environment, 8
Pulse, .. 236
PUSH, ... 78

R
Random, ... 211
Random Number Functions, 211
Reading and Writing Data to a File, 118
ReadInteger, ... 159
ReadIntegerArray, .. 161
ReadLongInteger, ... 163
ReadLongIntegerArray, 165
ReadSignedInteger, .. 167
ReadSignedIntegerArray, 169
ReadSignedLongInteger, 171
ReadSignedLongIntegerArray, 173
ReadString, ... 175
ReadStringArray, .. 177
ReadStructure, .. 179
Relational Operators, .. 16
Release, .. 79
Remove, ... 228
RemoveDirectory, .. 181
ResumeAllWait, ... 262
ResumeWait, .. 263
RetimeWait, ... 264
Return and Warranty Policies, 367
Returning a Value, .. 272
REVERSEFIND, .. 229
Right, .. 230
Rnd, .. 212
RotateLeft, .. 211
RotateLeftLong, ... 107
RotateRight, ... 106
RotateRightLong, ... 108

S
Scheduler is full, ... 278
Seed, ... 213
Language Reference Guide - DOC. 5797G SIMPL+® 359

Software Crestron SIMPL+ ®
SendCresnetPacket, .. 341
SendMail, ... 73
SendPacketToCPU, .. 342
SetArray, ... 98
SetCIP, .. 343
SETCLOCK, .. 254
SetCresnet, .. 344
SetCurrentDirectory, .. 182
SETDATE, ... 255
SetSlot, ... 345
SetString, .. 231
Signed vs Unsigned Arithmetic,........................... 18
SIGNED_INTEGER, ... 58
SIGNED_LONG_INTEGER, 60
SIMPL+ Version 3.00 Revisions, 336
SMAX, ... 209
SMin, .. 210
Software License Agreement, 365
Software Requirements, ... 1
Stacked Events, .. 80
StartFileOperations, .. 183
STRING, ... 62
String array out of bounds, 278
STRING CONCATENATION, 218
String Concatenation, ... 218
String Formatting & Printing Functions, 214
String Operators, .. 17
String Parsing & Manipulation Functions, 219
STRING_INPUT,... 64
STRING_OUTPUT,... 65
STRUCTURES, ... 67
SWITCH,... 91
SYNTAX ERRORS, .. 289
System Control, .. 234
System Interfacing, ... 238

T
Target Selection, ... 8
Task Switching for 2-Series Control Systems, 25
TerminateEvent, ... 237
TIME, ... 256
Time & Date Functions, 242
Trademark Information, 367

U
Upper, ... 233
User Defined Functions, 267

V
Variable Names, ... 13
Volatile, .. 69

W
Wait, ... 265
Wait Events, ... 257
WaitForNewDisk, ... 184
What's New, .. 7
WHILE, .. 85
WriteInteger, ... 185
WriteIntegerArray, ... 187
WriteLongInteger, .. 189
WriteLongIntegerArray, 284
WriteSignedInteger, ... 191
WriteSignedIntegerArray, 193
WriteSignedLongInteger, 195
WriteSignedLongIntegerArray, 197
WriteString, .. 199
WriteStringArray, ... 201
WriteStructure, ... 203

X
X-Generation Target and 2-Series Target Differences, 7
360 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Software License Agreement
This License Agreement (“Agreement”) is a legal contract between you (either an individual or a single business entity) and

Crestron Electronics, Inc. (“Crestron”) for software referenced in this guide, which includes computer software and, as applicable, asso-
ciated media, printed materials, and “online” or electronic documentation (the “Software”).

BY INSTALLING, COPYING, OR OTHERWISE USING THE SOFTWARE, YOU REPRESENT THAT YOU ARE AN
AUTHORIZED DEALER OF CRESTRON PRODUCTS OR A CRESTRON AUTHORIZED INDEPENDENT PROGRAMMER
AND YOU AGREE TO BE BOUND BY THE TERMS OF THIS AGREEMENT. IF YOU DO NOT AGREE TO THE TERMS OF
THIS AGREEMENT, DO NOT INSTALL OR USE THE SOFTWARE.

IF YOU HAVE PAID A FEE FOR THIS LICENSE AND DO NOT ACCEPT THE TERMS OF THIS AGREEMENT, CRE-
STRON WILL REFUND THE FEE TO YOU PROVIDED YOU (1) CLICK THE DO NOT ACCEPT BUTTON, (2) DO NOT
INSTALL THE SOFTWARE AND (3) RETURN ALL SOFTWARE, MEDIA AND OTHER DOCUMENTATION AND MATERI-
ALS PROVIDED WITH THE SOFTWARE TO CRESTRON AT: CRESTRON ELECTRONICS, INC., 15 VOLVO DRIVE, ROCK-
LEIGH, NEW JERSEY 07647, WITHIN 30 DAYS OF PAYMENT.

LICENSE TERMS

Crestron hereby grants You and You accept a nonexclusive, nontransferable license to use the Software (a) in machine read-
able object code together with the related explanatory written materials provided by Creston (b) on a central processing unit (“CPU”)
owned or leased or otherwise controlled exclusively by You, and (c) only as authorized in this Agreement and the related explanatory
files and written materials provided by Crestron.

If this software requires payment for a license, you may make one backup copy of the Software, provided Your backup copy
is not installed or used on any CPU. You may not transfer the rights of this Agreement to a backup copy unless the installed copy of the
Software is destroyed or otherwise inoperable and You transfer all rights in the Software.

You may not transfer the license granted pursuant to this Agreement or assign this Agreement without the express written
consent of Crestron.

If this software requires payment for a license, the total number of CPU’s on which all versions of the Software are installed
may not exceed one per license fee (1) and no concurrent, server or network use of the Software (including any permitted back-up cop-
ies) is permitted, including but not limited to using the Software (a) either directly or through commands, data or instructions from or to
another computer (b) for local, campus or wide area network, internet or web hosting services; or (c) pursuant to any rental, sharing or
“service bureau” arrangement.

The Software is designed as a software development and customization tool. As such Crestron cannot and does not guarantee
any results of use of the Software or that the Software will operate error free and You acknowledge that any development that You per-
form using the Software or Host Application is done entirely at Your own risk.

The Software is licensed and not sold. Crestron retains ownership of the Software and all copies of the Software and reserves
all rights not expressly granted in writing.

OTHER LIMITATIONS

You must be an Authorized Dealer of Crestron products or a Crestron Authorized Independent Programmer to install or use
the Software. If Your status as a Crestron Authorized Dealer or Crestron Authorized Independent Programmer is terminated, Your
license is also terminated.

You may not rent, lease, lend, sublicense, distribute or otherwise transfer or assign any interest in or to the Software.
You may not reverse engineer, decompile, or disassemble the Software.
You agree that the Software will not be shipped, transferred or exported into any country or used in any manner prohibited by

the United States Export Administration Act or any other export laws, restrictions or regulations (“Export Laws”). By downloading or
installing the Software You (a) are certifying that You are not a national of Cuba, Iran, Iraq, Libya, North Korea, Sudan, or Syria or any
country to which the United States embargoes goods (b) are certifying that You are not otherwise prohibited from receiving the Soft-
ware and (c) You agree to comply with the Export Laws.

If any part of this Agreement is found void and unenforceable, it will not affect the validity of the balance of the Agreement,
which shall remain valid and enforceable according to its terms. This Agreement may only be modified by a writing signed by an autho-
rized officer of Crestron. Updates may be licensed to You by Crestron with additional or different terms. This is the entire agreement
between Crestron and You relating to the Software and it supersedes any prior representations, discussions, undertakings, communica-
tions or advertising relating to the Software. The failure of either party to enforce any right or take any action in the event of a breach
hereunder shall constitute a waiver unless expressly acknowledged and set forth in writing by the party alleged to have provided such
waiver.
Language Reference Guide - DOC. 5797G SIMPL+® 361

Software Crestron SIMPL+®
If You are a business or organization, You agree that upon request from Crestron or its authorized agent, You will within thirty
(30) days fully document and certify that use of any and all Software at the time of the request is in conformity with Your valid licenses
from Crestron of its authorized agent.

Without prejudice to any other rights, Crestron may terminate this Agreement immediately upon notice if you fail to comply
with the terms and conditions of this Agreement. In such event, you must destroy all copies of the Software and all of its component
parts.

PROPRIETARY RIGHTS

Copyright. All title and copyrights in and to the Software (including, without limitation, any images, photographs, anima-
tions, video, audio, music, text, and “applets” incorporated into the Software), the accompanying media and printed materials, and any
copies of the Software are owned by Crestron or its suppliers. The Software is protected by copyright laws and international treaty pro-
visions. Therefore, you must treat the Software like any other copyrighted material, subject to the provisions of this Agreement.

Submissions. Should you decide to transmit to Crestron’s website by any means or by any media any materials or other infor-
mation (including, without limitation, ideas, concepts or techniques for new or improved services and products), whether as informa-
tion, feedback, data, questions, comments, suggestions or the like, you agree such submissions are unrestricted and shall be deemed
non-confidential and you automatically grant Crestron and its assigns a non-exclusive, royalty-tree, worldwide, perpetual, irrevocable
license, with the right to sublicense, to use, copy, transmit, distribute, create derivative works of, display and perform the same.

Trademarks. CRESTRON and the Swirl Logo are registered trademarks of Crestron Electronics, Inc. You shall not remove or
conceal any trademark or proprietary notice of Crestron from the Software including any back-up copy.

GOVERNING LAW

This Agreement shall be governed by the laws of the State of New Jersey, without regard to conflicts of laws principles. Any
disputes between the parties to the Agreement shall be brought in the state courts in Bergen County, New Jersey or the federal courts
located in the District of New Jersey. The United Nations Convention on Contracts for the International Sale of Goods, shall not apply
to this Agreement.

CRESTRON LIMITED WARRANTY

CRESTRON warrants that: (a) the Software will perform substantially in accordance with the published specifications for a
period of ninety (90) days from the date of receipt, and (b) that any hardware accompanying the Software will be subject to its own lim-
ited warranty as stated in its accompanying written material. Crestron shall, at its option, repair or replace or refund the license fee for
any Software found defective by Crestron if notified by you within the warranty period. The foregoing remedy shall be your exclusive
remedy for any claim or loss arising from the Software.

CRESTRON shall not be liable to honor warranty terms if the product has been used in any application other than that for
which it was intended, or if it as been subjected to misuse, accidental damage, modification, or improper installation procedures. Fur-
thermore, this warranty does not cover any product that has had the serial number or license code altered, defaced, improperly obtained,
or removed.

Notwithstanding any agreement to maintain or correct errors or defects Crestron, shall have no obligation to service or correct
any error or defect that is not reproducible by Crestron or is deemed in Crestron’s reasonable discretion to have resulted from (1) acci-
dent; unusual stress; neglect; misuse; failure of electric power, operation of the Software with other media not meeting or not main-
tained in accordance with the manufacturer’s specifications; or causes other than ordinary use; (2) improper installation by anyone other
than Crestron or its authorized agents of the Software that deviates from any operating procedures established by Crestron in the mate-
rial and files provided to You by Crestron or its authorized agent; (3) use of the Software on unauthorized hardware; or (4) modification
of, alteration of, or additions to the Software undertaken by persons other than Crestron or Crestron’s authorized agents.

ANY LIABILITY OF CRESTRON FOR A DEFECTIVE COPY OF THE SOFTWARE WILL BE LIMITED EXCLU-
SIVELY TO REPAIR OR REPLACEMENT OF YOUR COPY OF THE SOFTWARE WITH ANOTHER COPY OR REFUND OF
THE INITIAL LICENSE FEE CRESTRON RECEIVED FROM YOU FOR THE DEFECTIVE COPY OF THE PRODUCT. THIS
WARRANTY SHALL BE THE SOLE AND EXCLUSIVE REMEDY TO YOU. IN NO EVENT SHALL CRESTRON BE LIABLE
FOR INCIDENTAL, CONSEQUENTIAL, SPECIAL OR PUNITIVE DAMAGES OF ANY KIND (PROPERTY OR ECONOMIC
DAMAGES INCLUSIVE), EVEN IF A CRESTRON REPRESENTATIVE HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH
DAMAGES OR OF ANY CLAIM BY ANY THIRD PARTY. CRESTRON MAKES NO WARRANTIES, EXPRESS OR IMPLIED,
AS TO TITLE OR INFRINGEMENT OF THIRD-PARTY RIGHTS, MERCHANTABILITY OR FITNESS FOR ANY PARTICULAR
PURPOSE, OR ANY OTHER WARRANTIES, NOR AUTHORIZES ANY OTHER PARTY TO OFFER ANY WARRANTIES,
INCLUDING WARRANTIES OF MERCHANTABILITY FOR THIS PRODUCT. THIS WARRANTY STATEMENT SUPERSEDES
ALL PREVIOUS WARRANTIES.
362 SIMPL+® Language Reference Guide - DOC. 5797G

Crestron SIMPL+® Software
Return and Warranty Policies
Merchandise Returns / Repair Service

1. No merchandise may be returned for credit, exchange, or service without prior authoriza-
tion from CRESTRON. To obtain warranty service for CRESTRON products, contact the
factory and request an RMA (Return Merchandise Authorization) number. Enclose a note
specifying the nature of the problem, name and phone number of contact person, RMA
number, and return address.

2. Products may be returned for credit, exchange, or service with a CRESTRON Return Mer-
chandise Authorization (RMA) number. Authorized returns must be shipped freight prepaid
to CRESTRON, Cresskill, N.J., or its authorized subsidiaries, with RMA number clearly
marked on the outside of all cartons. Shipments arriving freight collect or without an RMA
number shall be subject to refusal. CRESTRON reserves the right in its sole and absolute
discretion to charge a 15% restocking fee, plus shipping costs, on any products returned
with an RMA.

3. Return freight charges following repair of items under warranty shall be paid by CRE-
STRON, shipping by standard ground carrier. In the event repairs are found to be non-war-
ranty, return freight costs shall be paid by the purchaser.

CRESTRON Limited Warranty

CRESTRON ELECTRONICS, Inc. warrants its products to be free from manufacturing defects in materi-
als and workmanship under normal use for a period of three (3) years from the date of purchase from
CRESTRON, with the following exceptions: disk drives and any other moving or rotating mechanical
parts, pantilt heads and power supplies are covered for a period of one (1) year; touchscreen display and
overlay components are covered for 90 days; batteries and incandescent lamps are not covered.

This warranty extends to products purchased directly from CRESTRON or an authorized CRESTRON
dealer. Purchasers should inquire of the dealer regarding the nature and extent of the dealer's warranty, if
any.

CRESTRON shall not be liable to honor the terms of this warranty if the product has been used in any
application other than that for which it was intended, or if it has been subjected to misuse, accidental dam-
age, modification, or improper installation procedures. Furthermore, this warranty does not cover any
product that has had the serial number altered, defaced, or removed.

This warranty shall be the sole and exclusive remedy to the original purchaser. In no event shall CRE-
STRON be liable for incidental or consequential damages of any kind (property or economic damages
inclusive) arising from the sale or use of this equipment. CRESTRON is not liable for any claim made by
a third party or made by the purchaser for a third party.

CRESTRON shall, at its option, repair or replace any product found defective, without charge for parts or
labor. Repaired or replaced equipment and parts supplied under this warranty shall be covered only by the
unexpired portion of the warranty.

Except as expressly set forth in this warranty, CRESTRON makes no other warranties, expressed or
implied, nor authorizes any other party to offer any warranty, including any implied warranties of mer-
chantability or fitness for a particular purpose. Any implied warranties that may be imposed by law are
limited to the terms of this limited warranty. This warranty statement supersedes all previous warranties.

Trademark Information
All brand names, product names, and trademarks are the sole property of their respective owners. Win-
dows is a registered trademark of Microsoft Corporation. Windows95/98/Me/XP and WindowsNT/2000
are trademarks of Microsoft Corporation.
Language Reference Guide - DOC. 5797G SIMPL+® 363

Language Reference Guide – DOC. 5797G
04.03

Specifications subject to
change without notice

Crestron Electronics, Inc.
15 Volvo Drive Rockleigh, NJ 07647
Tel: 888.CRESTRON
Fax: 201.767.7576
www.crestron.com

	SIMPL+ Language Reference Guide
	Introduction
	Software Requirements
	Licensing of SIMPL+ Cross Compiler
	What's New
	Converting from an X-Generation to a 2-Series Target
	X-Generation Target and 2-Series Target Differences

	Programming Environment
	Programming Environment Overview
	Target Selection
	Edit Preferences
	Insert Category

	General Information
	Conventions Used
	Variable Names
	Comments

	Relative Path Names for Files

	Operators
	Operators Overview
	Signed vs Unsigned Arithmetic
	Operator Precedence & Grouping
	Numeric Formats

	Task Switching
	Task Switching for X-Generation (CNX) Control Systems
	Task Switching for 2-Series Control Systems

	Language Constructs & Functions
	Language Constructs & Functions Overview
	Arrays
	Compiler Directives
	#CRESTRON_LIBRARY
	#DEFAULT_NONVOLATILE
	#DEFAULT_VOLATILE
	#DEFINE_CONSTANT
	#HELP
	#HELP_BEGIN … #HELP_END
	#HINT
	#IF_DEFINED … #ENDIF
	#SYMBOL_NAME
	#USER_LIBRARY
	#IF_NOT_DEFINED … #ENDIF

	Declarations
	Declarations Overview
	Fixed and Variable Size Arrays
	ANALOG_INPUT
	ANALOG_OUTPUT
	BUFFER_INPUT
	DIGITAL_INPUT
	DIGITAL_OUTPUT
	INTEGER
	LONG_INTEGER
	SIGNED_INTEGER
	SIGNED_LONG_INTEGER
	STRING
	STRING_INPUT
	STRING_OUTPUT
	STRUCTURES
	Nonvolatile
	SendMail
	EVENT
	PUSH
	Release
	Stacked Events
	FOR
	WHILE
	CSWITCH
	IF - ELSE
	SWITCH
	GetLastModifiedArrayIndex
	GetNumArrayCols
	GetNumArrayRows
	SetArray
	Byte
	High
	Low
	RotateLeft
	RotateRight
	RotateLeftLong
	RotateRightLong
	Atol
	Chr
	ItoA
	ItoHex
	LtoA
	LtoHex

	File Functions
	File Functions Overview
	File Function Return Error Codes
	Reading and Writing Data to a File
	CheckForDisk
	EndFileOperations
	FileBOF
	FileClose
	FileDate
	FileDay
	FileDelete
	FileEOF
	FileGetDateNum
	FileGetDayOfWeekNum
	FileGetHourNum
	FileGetMinutesNum
	FileGetMonthNum
	FileGetSecondsNum
	FileGetYearNum
	FILE_INFO Structure
	FileLength
	FileMonth
	FileOpen
	FileRead
	FileSeek
	FileTime
	FindClose
	FindFirst
	FindNext
	GetCurrentDirectory
	IsDirectory
	IsHidden
	IsReadOnly
	IsSystem
	IsVolume
	MakeDirectory
	ReadInteger
	ReadIntegerArray
	ReadLongInteger
	ReadLongIntegerArray
	ReadSignedInteger
	ReadSignedIntegerArray
	ReadSignedLongInteger
	ReadSignedLongIntegerArray
	ReadString
	ReadStringArray
	ReadStructure
	RemoveDirectory
	SetCurrentDirectory
	StartFileOperations
	WaitForNewDisk
	WriteInteger
	WriteIntegerArray
	WriteLongInteger
	WriteSignedInteger
	WriteSignedIntegerArray
	WriteSignedLongInteger
	WriteSignedLongIntegerArray
	WriteStringArray
	WriteStructure
	Max
	MIN
	MulDiv
	SMAX
	SMin
	Random
	Rnd
	Seed
	Print
	String Concatenation
	Find
	Gather
	GetC
	Left
	Len
	Lower
	Mid
	REVERSEFIND
	Right
	SetString
	Upper
	ProcessLogic
	Pulse
	TerminateEvent
	GenerateUserNotice
	GenerateUserWarning
	GenerateUserError
	CheckForNVRAMDisk
	Day
	GETDATENUM
	GETDAYOFWEEKNUM
	GETHOURNUM
	GETHSECONDS
	GETMINUTESNUM
	GETMONTHNUM
	GETSECONDSNUM
	GETTICKS
	GETYEARNUM
	MONTH
	SETCLOCK
	SETDATE
	TIME
	CancelAllWait
	CancelWait
	PauseAllWait
	PauseWait
	ResumeAllWait
	ResumeWait
	RetimeWait
	Wait
	Function Parameters
	ByRef, ByVal, ReadOnlyByRef
	Returning a Value
	Calling a Function
	Function Libraries
	Example 2: 8-Level switch on a Pesa switcher
	Example 3: Computing the Number of Days in a Month (Using Functions)
	Example 4: Computing the Number of Days in a Month (Using Function Libraries)

	Compiler Errors and Warnings
	Compiler Errors and Warnings Overview
	Syntax Errors (Compiler Errors 1000 to 1013)
	Compiler Error 1000
	Compiler Error 1001
	Compiler Error 1002
	Compiler Error 1003
	Compiler Error 1004
	Compiler Error 1005
	Compiler Error 1006
	Compiler Error 1007
	Compiler Error 1008
	Compiler Error 1009
	Compiler Error 1010
	Compiler Error 1011
	Compiler Error 1012
	Compiler Error 1013

	Fatal Errors (Compiler Errors 1100 to 1101)
	Compiler Error 1100
	Compiler Error 1101

	Expression Error (Compiler Errors 1200 to 1201)
	Compiler Error 1200
	Compiler Error 1201

	Declaration Errors (Compiler Errors 1300 to 1312)
	Compiler Error 1300
	Compiler Error 1301
	Compiler Error 1302
	Compiler Error 1303
	Compiler Error 1304
	Compiler Error 1305
	Compiler Error 1306
	Compiler Error 1307
	Compiler Error 1308
	Compiler Error 1309
	Compiler Error 1310
	Compiler Error 1311
	Compiler Error 1312
	Compiler Error 1313
	Compiler Error 1314

	Assignment Errors (Compiler Errors 1400 to 1402)
	Compiler Error 1400
	Compiler Error 1401
	Compiler Error 1402

	Function Argument Errors (Compiler Errors 1500 to 1508)
	Compiler Error 1500
	Compiler Error 1501
	Compiler Error 1502
	Compiler Error 1503
	Compiler Error 1504
	Compiler Error 1505
	Compiler Error 1506
	Compiler Error 1507
	Compiler Error 1508

	Construct Errors (Compiler Errors 1600 to 1608)
	Compiler Error 1600
	Compiler Error 1601
	Compiler Error 1602
	Compiler Error 1603
	Compiler Error 1604
	Compiler Error 1605
	Compiler Error 1606
	Compiler Error 1607
	Compiler Error 1608

	File Errors (Compiler Errors 1700 to 1702)
	Compiler Error 1700
	Compiler Error 1701
	Compiler Error 1702

	Compiler Warnings (Compiler Errors 1800 to 1803)
	Compiler Warning 1800
	Compiler Warning 1801
	Compiler Warning 1802
	Compiler Warning 1803

	SIMPL+ Revisions

	Obsolete Functions
	System Interfacing - Cresnet and CPU
	GetCIP
	GetCresnet
	GetSlot
	IsSignalDefined
	SendCresnetPacket
	SendPacketToCPU
	SetCIP
	SetCresnet
	SetSlot
	#ANALOG_OUTPUT_JOIN
	#DIGITAL_INPUT_JOIN
	#DIGITAL_OUTPUT_JOIN
	#STRING_INPUT_JOIN
	#STRING_OUTPUT_JOIN

	CEN-OEM-Specific Definitions
	_OEM_BREAK
	_OEM_CD
	_OEM_CTS
	_OEM_DTR
	_OEM_LONG_BREAK
	_OEM_MAX_STRING
	_OEM_PACING
	_OEM_RTS
	_OEM_STR_IN
	_OEM_STR_OUT

	Index
	Software License Agreement
	Return and Warranty Policies

